diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 188f5037c682294916b0daee600f006570fd71cc..970fca4125d8b0e0987853b53d0e6003a4c7b742 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -15,7 +15,7 @@ paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=N paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd0c3ebd813c39958c92b78e3eef7e912')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'f5369953dd0c443961cf79f7a00e1a03')) -paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', 'aba8093edebf2d5c869b735b92811e45')) +paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', 'f482e93b38b4018796969a2e1dde479d')) paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'e148d3ab1ed8edf3e928212a375959c0')) paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', 'b94d1f6bcc29c4fb58fc0058561250c2')) paddle.fluid.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) @@ -47,7 +47,7 @@ paddle.fluid.AsyncExecutor.run (ArgSpec(args=['self', 'program', 'data_feed', 'f paddle.fluid.AsyncExecutor.save_model (ArgSpec(args=['self', 'save_path'], varargs=None, keywords=None, defaults=None), ('document', 'c8ac0dfcb3b187aba25d03af7fea56b2')) paddle.fluid.AsyncExecutor.stop (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '5f23d043607bb5d55e466ec3f578e093')) paddle.fluid.CompiledProgram.__init__ (ArgSpec(args=['self', 'program_or_graph'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.CompiledProgram.with_data_parallel (ArgSpec(args=['self', 'loss_name', 'build_strategy', 'exec_strategy', 'share_vars_from', 'places'], varargs=None, keywords=None, defaults=(None, None, None, None, None)), ('document', '5e8cca4619a5d7c3280fb3cae7021b14')) +paddle.fluid.CompiledProgram.with_data_parallel (ArgSpec(args=['self', 'loss_name', 'build_strategy', 'exec_strategy', 'share_vars_from', 'places'], varargs=None, keywords=None, defaults=(None, None, None, None, None)), ('document', 'a8c7793803cf976680d9478e378fa356')) paddle.fluid.CompiledProgram.with_inference_optimize (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=None), ('document', '9e5b009d850191a010e859189c127fd8')) paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.ExecutionStrategy) -> None paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy.GradientScaleStrategy, arg0: int) -> None @@ -286,7 +286,7 @@ paddle.fluid.layers.DynamicRNN.block (ArgSpec(args=['self'], varargs=None, keywo paddle.fluid.layers.DynamicRNN.memory (ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32')), ('document', 'b9174d4e91505b0c8ecc193eb51e248d')) paddle.fluid.layers.DynamicRNN.output (ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None), ('document', 'b439a176a3328de8a75bdc5c08eece4a')) paddle.fluid.layers.DynamicRNN.static_input (ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None), ('document', 'f29ad2478b6b2ad4f413d2936a331ea0')) -paddle.fluid.layers.DynamicRNN.step_input (ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None), ('document', '169d694d2224f62b4f3afdc3dbc19e95')) +paddle.fluid.layers.DynamicRNN.step_input (ArgSpec(args=['self', 'x', 'level'], varargs=None, keywords=None, defaults=(0,)), ('document', '7568c5ac7622a10288d3307a94134655')) paddle.fluid.layers.DynamicRNN.update_memory (ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None), ('document', '5d83987da13b98363d6a807a52d8024f')) paddle.fluid.layers.StaticRNN.__init__ (ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.layers.StaticRNN.memory (ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1)), ('document', 'c24e368e23afac1ed91a78a639d7a9c7')) @@ -305,7 +305,7 @@ paddle.fluid.layers.tanh (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non paddle.fluid.layers.atan (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3a46e0b5f9ce82348406478e610f14c9')) paddle.fluid.layers.tanh_shrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1e521554b9fdda9061ec6d306f0709b7')) paddle.fluid.layers.softshrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9eef31597bbafa2bd49691e072296e13')) -paddle.fluid.layers.sqrt (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '072a8541e0f632366bba10f67cb0db27')) +paddle.fluid.layers.sqrt (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e9e27491c39ac74d0b1ffe506aec0ebb')) paddle.fluid.layers.abs (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '64650ac42cf82e9920cb0b172b1d29fd')) paddle.fluid.layers.ceil (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c75d67dc5fe28f68e4cfffead4f698ad')) paddle.fluid.layers.floor (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '647b16c5da5ef909649ae02abb434973')) @@ -503,7 +503,7 @@ paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinne paddle.fluid.ParamAttr.__init__ (ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.WeightNormParamAttr.__init__ (ArgSpec(args=['self', 'dim', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, None, 1.0, None, True, None, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.DataFeeder.__init__ (ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.DataFeeder.decorate_reader (ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)), ('document', '0eed2f198dc73c08a41b61edbc755753')) +paddle.fluid.DataFeeder.decorate_reader (ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)), ('document', 'f8f3df23c5633c614db781a91b81fb62')) paddle.fluid.DataFeeder.feed (ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None), ('document', '459e316301279dfd82001b46f0b8ffca')) paddle.fluid.DataFeeder.feed_parallel (ArgSpec(args=['self', 'iterable', 'num_places'], varargs=None, keywords=None, defaults=(None,)), ('document', '543863d1f9d4853758adb613b8659e85')) paddle.fluid.clip.ErrorClipByValue.__init__ (ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) @@ -528,11 +528,11 @@ paddle.reader.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', de paddle.reader.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'd22c34e379a53901ae67a6bca7f4def4')) paddle.reader.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d')) paddle.reader.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad')) -paddle.reader.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '283bc0b8a0e26ae186b8b9bee4aec560')) +paddle.reader.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796')) paddle.reader.PipeReader.__init__ (ArgSpec(args=['self', 'command', 'bufsize', 'file_type'], varargs=None, keywords=None, defaults=(8192, 'plain')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.reader.PipeReader.get_line (ArgSpec(args=['self', 'cut_lines', 'line_break'], varargs=None, keywords=None, defaults=(True, '\n')), ('document', '5f80a7ed70052f01665e4c74acccfa69')) +paddle.reader.PipeReader.get_line (ArgSpec(args=['self', 'cut_lines', 'line_break'], varargs=None, keywords=None, defaults=(True, '\n')), ('document', '9621ae612e595b6c34eb3bb5f3eb1a45')) paddle.reader.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0')) paddle.reader.Fake.__init__ (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.reader.creator.np_array (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '28d457fbc9a71efa4ac91a3be179cada')) -paddle.reader.creator.text_file (ArgSpec(args=['path'], varargs=None, keywords=None, defaults=None), ('document', '44fe286ab6175a5464d3a961a68c266a')) -paddle.reader.creator.recordio (ArgSpec(args=['paths', 'buf_size'], varargs=None, keywords=None, defaults=(100,)), ('document', '11b3704ea42cfd537953387a7e58dae8')) +paddle.reader.creator.text_file (ArgSpec(args=['path'], varargs=None, keywords=None, defaults=None), ('document', 'f45fcb7add066c8e042c6774fc7c3db2')) +paddle.reader.creator.recordio (ArgSpec(args=['paths', 'buf_size'], varargs=None, keywords=None, defaults=(100,)), ('document', 'b4a94ee0e2cefb495619275c2f8c61d2')) diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt index 9f06455ea5410bcab081ed212a34960f8fe6f0bf..5f29ebc70f0c5c5aaa924bc1ced5c6131a69b5c0 100644 --- a/paddle/fluid/framework/details/CMakeLists.txt +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -9,6 +9,7 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place cc_library(multi_devices_helper SRCS multi_devices_helper.cc DEPS graph graph_helper) cc_library(multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_helper) cc_library(multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_helper) +cc_library(alloc_continuous_space_for_grad_pass SRCS alloc_continuous_space_for_grad_pass.cc DEPS graph graph_helper) cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows) @@ -22,6 +23,8 @@ endif() if(WITH_GPU) nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory dynload_cuda variable_visitor) + nv_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory + dynload_cuda variable_visitor) if(WITH_DISTRIBUTE) nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda selected_rows_functor sendrecvop_rpc) @@ -35,6 +38,8 @@ if(WITH_GPU) else() cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory variable_visitor) + cc_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory + variable_visitor) if(WITH_DISTRIBUTE) cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim selected_rows_functor sendrecvop_rpc) @@ -71,6 +76,8 @@ cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_he cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle) +cc_library(fuse_all_reduce_op_pass SRCS fuse_all_reduce_op_pass.cc DEPS graph graph_helper fused_all_reduce_op_handle) + set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass inplace_op_pass) if (WITH_GPU) list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass) @@ -98,5 +105,5 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS graph_viz_pass multi_devices_graph_pass multi_devices_graph_print_pass multi_devices_graph_check_pass fuse_elewise_add_act_pass multi_batch_merge_pass - fuse_relu_depthwise_conv_pass - memory_optimize_pass lock_free_optimize_pass) + fuse_relu_depthwise_conv_pass + memory_optimize_pass lock_free_optimize_pass alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass) diff --git a/paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.cc b/paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..fbc8bbf56b0d1ce75fbb459038c63571d0a16cd3 --- /dev/null +++ b/paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.cc @@ -0,0 +1,393 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include +#include + +#include "paddle/fluid/framework/details/build_strategy.h" +#include "paddle/fluid/framework/details/multi_devices_helper.h" +#include "paddle/fluid/framework/ir/graph_helper.h" +#include "paddle/fluid/framework/op_registry.h" +DEFINE_uint32(fuse_parameter_memory_size, 0, // 0 KB + "fuse_parameter_memory_size is up limited memory size " + "of one group parameters' gradient which is the input " + "of communication calling(e.g NCCLAllReduce). " + "The default value is 0, it means that " + "not set group according to memory_size."); +DEFINE_int32( + fuse_parameter_groups_size, 3, + "fuse_parameter_groups_size is the size of one group parameters' gradient. " + "The default value is a experimental result. If the " + "fuse_parameter_groups_size is 1, it means that the groups size is " + "the number of parameters' gradient. If the fuse_parameter_groups_size is " + "-1, it means that there are only one group. The default value is 3, it is " + "an experimental value."); + +namespace paddle { +namespace framework { +namespace details { + +static const char kUnKnow[] = "@UNKNOW@"; +static framework::proto::VarType::Type kDefaultDtype = + framework::proto::VarType::Type::VarType_Type_BOOL; + +class AllocContinuousSpaceForGradPass : public ir::Pass { + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override { + ir::Graph &result = *graph; + + auto &places = Get>(kPlaces); + auto &local_scopes = Get>(kLocalScopes); + + ResetAttribute(kParamsAndGrads, &result); + ResetAttribute(kGroupGradsAndParams, &result); + + // NOTE: The operator nodes should be in topology order. + std::vector topo_nodes = ir::TopologySortOperations(result); + auto ¶ms_grads = result.Get(kParamsAndGrads); + for (auto &node : topo_nodes) { + RecordParamsAndGrads(node, ¶ms_grads); + } + + if (params_grads.size() == 0) { + VLOG(10) << "Doesn't find gradients"; + return std::move(graph); + } + + std::unordered_map vars; + for (ir::Node *node : result.Nodes()) { + if (node->IsVar() && node->Var()) { + // Note: The graph may have the same name node. For example, parameter + // is the input of operator and it also is the output of optimizer; + vars.emplace(node->Var()->Name(), node); + } + } + + auto &group_grads_params = + result.Get(kGroupGradsAndParams); + + // Note: the order of params_grads may be changed by SetGroupGradsAndParams. + SetGroupGradsAndParams(vars, params_grads, &group_grads_params); + + params_grads.clear(); + for (auto &group_p_g : group_grads_params) { + params_grads.insert(params_grads.begin(), group_p_g.begin(), + group_p_g.end()); + } + for (auto &p_g : params_grads) { + std::swap(p_g.first, p_g.second); + } + + // Set Gradients as Persistable to prevent this var becoming reusable. + auto dtype = kDefaultDtype; + for (auto &p_g : params_grads) { + // Get gradient var + auto iter = vars.find(p_g.second); + PADDLE_ENFORCE(iter != vars.end(), "%s is not found.", p_g.second); + iter->second->Var()->SetPersistable(true); + + PADDLE_ENFORCE(IsSupportedVarType(iter->second->Var()->GetType())); + + // Get Dtype + auto ele_dtype = iter->second->Var()->GetDataType(); + if (dtype == kDefaultDtype) { + dtype = ele_dtype; + PADDLE_ENFORCE_NE(ele_dtype, kDefaultDtype); + } + PADDLE_ENFORCE_EQ(ele_dtype, dtype); + } + + // Create the fused variable name. + if (!result.Has(kFusedVars)) { + result.Set(kFusedVars, new FusedVars); + } + const std::string prefix(kFusedVarNamePrefix); + // The fused_var_name should be unique. + auto fused_var_name = prefix + "GRAD@" + params_grads[0].second; + auto &fused_var_set = result.Get(kFusedVars); + PADDLE_ENFORCE_EQ(fused_var_set.count(fused_var_name), 0); + fused_var_set.insert(fused_var_name); + + InitFusedVarsAndAllocSpaceForVars(places, local_scopes, vars, + fused_var_name, params_grads); + + return std::move(graph); + } + + template + void ResetAttribute(const std::string &attr_name, ir::Graph *graph) const { + if (graph->Has(attr_name)) { + VLOG(10) << attr_name << " is reset."; + graph->Erase(attr_name); + } + graph->Set(attr_name, new AttrType); + } + + void SetGroupGradsAndParams( + const std::unordered_map &var_nodes, + const ParamsAndGrads ¶ms_grads, + GroupGradsAndParams *group_grads_params) const { + SetGroupAccordingToLayers(var_nodes, params_grads, group_grads_params); + SetGroupAccordingToMemorySize(var_nodes, group_grads_params); + SetGroupAccordingToGroupSize(var_nodes, group_grads_params); + } + + void SetGroupAccordingToLayers( + const std::unordered_map &var_nodes, + const ParamsAndGrads ¶ms_grads, + GroupGradsAndParams *group_grads_params) const { + std::unordered_map> layer_params; + + for (size_t i = 0; i < params_grads.size(); ++i) { + auto pos = params_grads[i].first.find_first_of("."); + if (pos == std::string::npos) { + layer_params[std::string(kUnKnow)].emplace_back(i); + } else { + layer_params[params_grads[i].first.substr(0, pos)].emplace_back(i); + } + } + + group_grads_params->reserve(layer_params.size()); + for (size_t i = 0; i < params_grads.size(); ++i) { + auto pos = params_grads[i].first.find_first_of("."); + std::string key = kUnKnow; + if (pos != std::string::npos) { + key = params_grads[i].first.substr(0, pos); + } + auto iter = layer_params.find(key); + if (iter == layer_params.end()) continue; + + group_grads_params->emplace_back(); + auto &local_group_grads_params = group_grads_params->back(); + for (auto &idx : iter->second) { + local_group_grads_params.emplace_back( + std::make_pair(params_grads[idx].second, params_grads[idx].first)); + } + layer_params.erase(iter); + } + + VLOG(10) << "SetGroupAccordingToLayers: "; + for (size_t i = 0; i < group_grads_params->size(); ++i) { + VLOG(10) << "group " << i; + std::stringstream out; + for (auto &p_g : group_grads_params->at(i)) { + out << "(" << p_g.second << ", " << p_g.first << "), "; + } + VLOG(10) << out.str(); + } + } + + void SetGroupAccordingToMemorySize( + const std::unordered_map &var_nodes, + GroupGradsAndParams *group_grads_params) const { + if (FLAGS_fuse_parameter_memory_size == 0) { + return; + } + size_t group_memory_size = + static_cast(FLAGS_fuse_parameter_memory_size); + GroupGradsAndParams local_group_grads_params; + + size_t j = 0; + while (j < group_grads_params->size()) { + local_group_grads_params.emplace_back(); + auto &group_p_g = local_group_grads_params.back(); + size_t local_group_memory_size = 0; + while (j < group_grads_params->size()) { + std::for_each( + group_grads_params->at(j).begin(), group_grads_params->at(j).end(), + [&local_group_memory_size, + &var_nodes](const std::pair &g_p) { + auto iter = var_nodes.find(g_p.second); + PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.", + g_p.second); + auto shape = iter->second->Var()->GetShape(); + size_t size = + framework::SizeOfType(iter->second->Var()->GetDataType()); + std::for_each(shape.begin(), shape.end(), + [&size](const int64_t &n) { size *= n; }); + local_group_memory_size += size; + }); + group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(), + group_grads_params->at(j).end()); + ++j; + if (local_group_memory_size >= group_memory_size) { + break; + } + } + } + + std::swap(*group_grads_params, local_group_grads_params); + + VLOG(10) << string::Sprintf( + "SetGroupAccordingToMemorySize(memory_size: %d):", + FLAGS_fuse_parameter_memory_size); + for (size_t i = 0; i < group_grads_params->size(); ++i) { + VLOG(10) << "group " << i; + std::stringstream out; + for (auto &g_p : group_grads_params->at(i)) { + auto iter = var_nodes.find(g_p.second); + PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.", g_p.second); + auto shape = iter->second->Var()->GetShape(); + size_t size = framework::SizeOfType(iter->second->Var()->GetDataType()); + std::for_each(shape.begin(), shape.end(), + [&size](const int64_t &n) { size *= n; }); + out << string::Sprintf("(%s(%d), %s)", g_p.second, size, g_p.first); + } + VLOG(10) << out.str(); + } + } + + void SetGroupAccordingToGroupSize( + const std::unordered_map &var_nodes, + GroupGradsAndParams *group_grads_params) const { + if (FLAGS_fuse_parameter_groups_size == 1) { + return; + } + size_t group_size = static_cast(FLAGS_fuse_parameter_groups_size); + if (FLAGS_fuse_parameter_groups_size == -1) { + group_size = group_grads_params->size(); + } + PADDLE_ENFORCE_GT(group_size, 1); + size_t groups = (group_grads_params->size() + group_size - 1) / group_size; + GroupGradsAndParams local_group_grads_params; + local_group_grads_params.reserve(groups); + + size_t j = 0; + for (size_t i = 0; i < groups; ++i) { + local_group_grads_params.emplace_back(); + auto &group_p_g = local_group_grads_params.back(); + group_p_g.reserve(group_size); + while (j < group_grads_params->size()) { + group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(), + group_grads_params->at(j).end()); + ++j; + if (j % group_size == 0) break; + } + } + std::swap(*group_grads_params, local_group_grads_params); + + VLOG(10) << "SetGroupAccordingToGroupSize(group_size: " << group_size + << "): "; + for (size_t i = 0; i < group_grads_params->size(); ++i) { + VLOG(10) << "group " << i; + std::stringstream out; + for (auto &p_g : group_grads_params->at(i)) { + out << "(" << p_g.second << ", " << p_g.first << "), "; + } + VLOG(10) << out.str(); + } + } + + private: + bool IsSupportedVarType(const proto::VarType::Type &type) const { + // Current only support LOD_TENSOR. + return type == proto::VarType::LOD_TENSOR; + } + + void AppendAllocSpaceForVarsOp(const std::vector ¶ms_name, + const std::vector &grads_name, + const std::string &fused_var_name, + BlockDesc *global_block) const { + auto op_desc = global_block->AppendOp(); + op_desc->SetType("alloc_continuous_space"); + op_desc->SetInput("Input", params_name); + op_desc->SetOutput("Output", grads_name); + op_desc->SetOutput("FusedOutput", {fused_var_name}); + } + + void RecordParamsAndGrads(ir::Node *node, + ParamsAndGrads *params_grads) const { + try { + bool is_bk_op = + static_cast(boost::get(node->Op()->GetAttr( + OpProtoAndCheckerMaker::OpRoleAttrName())) & + static_cast(OpRole::kBackward)); + if (!is_bk_op) return; + + // Currently, we assume that once gradient is generated, it can be + // broadcast, and each gradient is only broadcast once. + auto backward_vars = + boost::get>(node->Op()->GetNullableAttr( + OpProtoAndCheckerMaker::OpRoleVarAttrName())); + PADDLE_ENFORCE_EQ(backward_vars.size() % 2, static_cast(0)); + + for (size_t i = 0; i < backward_vars.size(); i += 2) { + VLOG(10) << "Trainable parameter: " << backward_vars[i] + << ", gradient: " << backward_vars[i + 1]; + + params_grads->emplace_back(std::make_pair( + backward_vars[i] /*param*/, backward_vars[i + 1] /*grad*/)); + } + } catch (boost::bad_get e) { + } + } + + void InitFusedVarsAndAllocSpaceForVars( + const std::vector &places, + const std::vector &local_scopes, + const std::unordered_map &vars, + const std::string &fused_var_name, + const ParamsAndGrads ¶ms_grads) const { + // Init Gradients and FusedVars + VLOG(10) << "Init FusedVars and Gradients."; + for (auto it = local_scopes.rbegin(); it != local_scopes.rend(); ++it) { + auto &scope = *it; + + PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr, + "%s has existed in scope.", fused_var_name); + scope->Var(fused_var_name)->GetMutable(); + + for (auto &p_g : params_grads) { + auto iter = vars.find(p_g.second); + PADDLE_ENFORCE(iter != vars.end()); + PADDLE_ENFORCE_NOT_NULL(iter->second->Var()); + PADDLE_ENFORCE_EQ(iter->second->Var()->GetType(), + proto::VarType::LOD_TENSOR); + scope->Var(p_g.second)->GetMutable(); + } + } + + std::vector grads_name; + std::vector params_name; + grads_name.reserve(params_grads.size()); + params_name.reserve(params_grads.size()); + for (auto &p_g : params_grads) { + params_name.emplace_back(p_g.first); + grads_name.emplace_back(p_g.second); + } + framework::ProgramDesc program_desc; + AppendAllocSpaceForVarsOp(params_name, grads_name, fused_var_name, + program_desc.MutableBlock(0)); + + // Run Only Once Programs + for (size_t i = 0; i < local_scopes.size(); ++i) { + for (auto &op_desc : program_desc.Block(0).AllOps()) { + auto op = OpRegistry::CreateOp(*op_desc); + op->Run(*local_scopes[i], places[i]); + } + } + } +}; + +} // namespace details +} // namespace framework +} // namespace paddle + +REGISTER_PASS(alloc_continuous_space_for_grad_pass, + paddle::framework::details::AllocContinuousSpaceForGradPass) + .RequirePassAttr(paddle::framework::details::kPlaces) + .RequirePassAttr(paddle::framework::details::kLocalScopes); diff --git a/paddle/fluid/framework/details/build_strategy.cc b/paddle/fluid/framework/details/build_strategy.cc index 932d0b4538eb2ec5df97d0bde806c33f825b6f68..4184353bcbd96e0b13f0dc11794e5d4f35cd5a25 100644 --- a/paddle/fluid/framework/details/build_strategy.cc +++ b/paddle/fluid/framework/details/build_strategy.cc @@ -46,7 +46,16 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { public: explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy) : ir::PassBuilder(), strategy_(strategy) { + // Add a graph viz pass to record a graph. + if (!strategy_.debug_graphviz_path_.empty()) { + auto viz_pass = AppendPass("graph_viz_pass"); + const std::string graph_path = string::Sprintf( + "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph"); + viz_pass->Set("graph_viz_path", new std::string(graph_path)); + } + if (strategy_.enable_sequential_execution_) { + VLOG(10) << "Add sequential_execution_pass"; AppendPass("sequential_execution_pass"); } @@ -57,6 +66,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { // Add op fusion. if (strategy.fuse_relu_depthwise_conv_) { + VLOG(10) << "Add fuse_relu_depthwise_conv_pass"; AppendPass("fuse_relu_depthwise_conv_pass"); } @@ -68,29 +78,30 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { // Add automatically inplace. if (strategy_.enable_inplace_) { + VLOG(10) << "Add inplace_pass"; AppendPass("inplace_pass"); } + if (strategy.fuse_elewise_add_act_ops_) { + VLOG(10) << "Add fuse_elewise_add_act_pass"; + AppendPass("fuse_elewise_add_act_pass"); + } + + // for single card training, fuse_all_reduce_ops is unnecessary. + // alloc_continuous_space_for_grad_pass should be before of MultiDevPass. + if (strategy.fuse_all_reduce_ops_) { + VLOG(10) << "Add alloc_continuous_space_for_grad_pass"; + AppendPass("alloc_continuous_space_for_grad_pass"); + } + // Add a graph viz pass to record a graph. - if (!strategy_.debug_graphviz_path_.empty()) { + if (!strategy.debug_graphviz_path_.empty()) { auto viz_pass = AppendPass("graph_viz_pass"); const std::string graph_path = string::Sprintf( - "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph"); + "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph"); viz_pass->Set("graph_viz_path", new std::string(graph_path)); } - if (strategy.fuse_elewise_add_act_ops_) { - auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass"); - // Add a graph viz pass to record a graph. - if (!strategy.debug_graphviz_path_.empty()) { - auto viz_pass = AppendPass("graph_viz_pass"); - const std::string graph_path = string::Sprintf( - "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph"); - viz_pass->Set("graph_viz_path", - new std::string(graph_path)); - } - } - CollectiveContext *context = CollectiveContext::GetInstance(); context->endpoints_ = strategy_.trainers_endpoints_; context->trainer_id_ = strategy_.trainer_id_; @@ -108,11 +119,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { // A side-effect of that, memory optimize cannot forsee the fetched vars // , so fetchlist should be set persistable before call the Run interface. if (strategy.memory_optimize_) { - auto memory_optimize_pass = AppendPass("memory_optimize_pass"); + VLOG(10) << "Add memory_optimize_pass"; + AppendPass("memory_optimize_pass"); } AppendMultiDevPass(strategy); + if (strategy.fuse_all_reduce_ops_) { + // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator + // first, if the number is zero, fuse_all_reduce_ops will do nothing. + VLOG(10) << "Add fuse_all_reduce_op_pass"; + AppendPass("fuse_all_reduce_op_pass"); + } + // Add a graph print pass to record a graph with device info. if (!strategy_.debug_graphviz_path_.empty()) { auto multi_devices_print_pass = AppendPass("multi_devices_print_pass"); @@ -129,27 +148,29 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { AppendPass("multi_devices_check_pass"); if (SeqOnlyAllReduceOps(strategy)) { + VLOG(10) << "Add all_reduce_deps_pass"; AppendPass("all_reduce_deps_pass"); } if (strategy_.remove_unnecessary_lock_) { + VLOG(10) << "Add modify_op_lock_and_record_event_pass"; AppendPass("modify_op_lock_and_record_event_pass"); } } // Convert graph to run on multi-devices. void AppendMultiDevPass(const BuildStrategy &strategy) { - ir::Pass *multi_devices_pass; + ir::Pass *multi_devices_pass = nullptr; if (strategy_.is_distribution_) { - VLOG(3) << "multi device parameter server mode"; + VLOG(10) << "Add dist_multi_devices_pass"; multi_devices_pass = AppendPass("dist_multi_devices_pass").get(); } else { if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) { - VLOG(3) << "multi devices collective mode with allreduce"; + VLOG(10) << "Add all_reduce_mode_multi_devices_pass"; multi_devices_pass = - AppendPass("allreduce_mode_multi_devices_pass").get(); + AppendPass("all_reduce_mode_multi_devices_pass").get(); } else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) { - VLOG(3) << "multi deivces collective mode with reduce"; + VLOG(10) << "Add reduce_mode_multi_devices_pass"; multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get(); } else { PADDLE_THROW("Unknown reduce strategy."); @@ -206,9 +227,26 @@ std::unique_ptr BuildStrategy::Apply( #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr; - pass->Erase("nccl_ctxs"); - pass->SetNotOwned("nccl_ctxs", nctx); + pass->Erase(kNCCLCtxs); + pass->SetNotOwned(kNCCLCtxs, nctx); #endif + } else if (pass->Type() == "fuse_all_reduce_op_pass") { + pass->Erase(kPlaces); + pass->SetNotOwned>(kPlaces, &places); + pass->Erase(kLocalScopes); + pass->SetNotOwned>(kLocalScopes, + &local_scopes); +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr; + pass->Erase(kNCCLCtxs); + pass->SetNotOwned(kNCCLCtxs, nctx); +#endif + } else if (pass->Type() == "alloc_continuous_space_for_grad_pass") { + pass->Erase(kPlaces); + pass->SetNotOwned>(kPlaces, &places); + pass->Erase(kLocalScopes); + pass->SetNotOwned>(kLocalScopes, + &local_scopes); } else if (pass->Type() == "sequential_execution_pass") { LOG(INFO) << "set enable_sequential_execution:" << enable_sequential_execution_; @@ -239,7 +277,7 @@ USE_PASS(fuse_elewise_add_act_pass); USE_PASS(graph_viz_pass); USE_PASS(multi_batch_merge_pass); USE_PASS(reduce_mode_multi_devices_pass); -USE_PASS(allreduce_mode_multi_devices_pass); +USE_PASS(all_reduce_mode_multi_devices_pass); USE_PASS(dist_multi_devices_pass); USE_PASS(multi_devices_check_pass); USE_PASS(multi_devices_print_pass); @@ -249,4 +287,6 @@ USE_PASS(all_reduce_deps_pass); USE_PASS(modify_op_lock_and_record_event_pass); USE_PASS(inplace_pass); USE_PASS(lock_free_optimize_pass); +USE_PASS(alloc_continuous_space_for_grad_pass); USE_PASS(graph_to_program_pass); +USE_PASS(fuse_all_reduce_op_pass); diff --git a/paddle/fluid/framework/details/build_strategy.h b/paddle/fluid/framework/details/build_strategy.h index 122411641dacde57ef3851f05bc92d86c1f83866..4b599fb914dc7c35a0524ea62ba8d458b8dccf8f 100644 --- a/paddle/fluid/framework/details/build_strategy.h +++ b/paddle/fluid/framework/details/build_strategy.h @@ -16,6 +16,7 @@ #include #include +#include #include #include "paddle/fluid/framework/ir/pass_builder.h" @@ -75,6 +76,8 @@ struct BuildStrategy { bool fuse_elewise_add_act_ops_{false}; + bool fuse_all_reduce_ops_{false}; + bool fuse_relu_depthwise_conv_{false}; bool sync_batch_norm_{false}; diff --git a/paddle/fluid/framework/details/fuse_all_reduce_op_pass.cc b/paddle/fluid/framework/details/fuse_all_reduce_op_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..f226491c9f5355d0418d672069b19a78ef53c595 --- /dev/null +++ b/paddle/fluid/framework/details/fuse_all_reduce_op_pass.cc @@ -0,0 +1,195 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include + +#include "paddle/fluid/framework/details/all_reduce_op_handle.h" +#include "paddle/fluid/framework/details/container_cast.h" +#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h" +#include "paddle/fluid/framework/details/multi_devices_helper.h" +#include "paddle/fluid/framework/ir/graph_helper.h" + +namespace paddle { +namespace framework { +namespace details { + +class FuseAllReduceOpPass : public ir::Pass { + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override { + ir::Graph &result = *graph; + + auto &places = Get>(kPlaces); + auto &local_scopes = Get>(kLocalScopes); +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + auto *nccl_ctxs = &Get(kNCCLCtxs); +#endif + + std::unordered_set grads; + auto ¶ms_grads = result.Get(kParamsAndGrads); + size_t num_of_all_reduce = params_grads.size(); + grads.reserve(num_of_all_reduce); + for (auto p_g : params_grads) { + grads.insert(p_g.second); + } + + size_t num_place = places.size(); + std::unordered_map all_reduce_ops; + all_reduce_ops.reserve(grads.size()); + for (auto &node : result.Nodes()) { + if (node->IsOp()) { + PADDLE_ENFORCE(node->IsWrappedBy()); + auto *all_reduce_op_handle = + dynamic_cast(&node->Wrapper()); + if (all_reduce_op_handle) { + auto inputs = DynamicCast(all_reduce_op_handle->Inputs()); + PADDLE_ENFORCE_EQ(inputs.size(), num_place); + // The inputs' name should be the same. + auto &grad_name = inputs[0]->name(); + for (size_t i = 1; i < inputs.size(); ++i) { + PADDLE_ENFORCE_EQ(inputs[i]->name(), grad_name, + "The input name should be the same."); + } + PADDLE_ENFORCE_NE(grads.count(grad_name), static_cast(0)); + all_reduce_ops.emplace(grad_name, node); + } + } + } + + VLOG(10) << "Find all_reduce_ops: " << all_reduce_ops.size(); + if (all_reduce_ops.size() == 0) { + return std::move(graph); + } + + PADDLE_ENFORCE_EQ(all_reduce_ops.size(), grads.size(), + "The number of all_reduce OpHandle is not equal to the " + "number of grads. Maybe some gradients are sparse type, " + "it is not supported currently."); + VLOG(10) << "Insert fused_all_reduce"; + + auto &group_grads_params = + graph->Get(kGroupGradsAndParams); + + for (auto &group_g_p : group_grads_params) { + size_t group_size = group_g_p.size(); + PADDLE_ENFORCE_GT(group_size, static_cast(0)); + std::vector group_all_reduce_ops; + group_all_reduce_ops.reserve(group_size); + for (auto &g_p : group_g_p) { + group_all_reduce_ops.emplace_back(all_reduce_ops.at(g_p.first)); + } +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + InsertFusedAllReduce(places, local_scopes, group_size, + group_all_reduce_ops, nccl_ctxs, &result); +#else + InsertFusedAllReduce(places, local_scopes, group_size, + group_all_reduce_ops, &result); +#endif + } + return std::move(graph); + } + + void InsertFusedAllReduce(const std::vector &places, + const std::vector &local_scopes, + const size_t num_of_all_reduce, + const std::vector &all_reduce_ops, +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + const platform::NCCLContextMap *nccl_ctxs, +#endif + ir::Graph *result) const { + std::vector inputs; + std::vector outputs; + for (auto &op : all_reduce_ops) { + auto &op_handle = op->Wrapper(); + inputs.insert(inputs.end(), op_handle.Inputs().begin(), + op_handle.Inputs().end()); + // Remove output + for_each(op_handle.Inputs().begin(), op_handle.Inputs().end(), + [&op_handle](VarHandleBase *var_handle) { + var_handle->RemoveOutput(&op_handle, op_handle.Node()); + }); + + outputs.insert(outputs.end(), op_handle.Outputs().begin(), + op_handle.Outputs().end()); + // Remove Input + for_each( + op_handle.Outputs().begin(), op_handle.Outputs().end(), + [](VarHandleBase *var_handle) { var_handle->ClearGeneratedOp(); }); + + result->RemoveNode(op_handle.Node()); + } + +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places, + local_scopes, nccl_ctxs, result); +#else + CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places, + local_scopes, result); +#endif + } + + private: + void CreateFusedAllReduceOp(const std::vector &inputs, + const std::vector &outputs, + const size_t num_of_all_reduce, + const std::vector &places, + const std::vector &local_scopes, +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + const platform::NCCLContextMap *nccl_ctxs, +#endif + ir::Graph *result) const { +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + auto *op_handle = new FusedAllReduceOpHandle( + result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation), + local_scopes, places, num_of_all_reduce, nccl_ctxs); +#else + auto *op_handle = new FusedAllReduceOpHandle( + result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation), + local_scopes, places, num_of_all_reduce); +#endif + + for (auto in : inputs) { + op_handle->AddInput(in); + } + + for (auto out : outputs) { + op_handle->AddOutput(out); + } + +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + if (!nccl_ctxs) { + SetCommunicationContext(places, op_handle); + } +#else + SetCommunicationContext(places, op_handle); +#endif + } + + void SetCommunicationContext(const std::vector &places, + FusedAllReduceOpHandle *op_handle) const { + for (size_t i = 0; i < places.size(); ++i) { + op_handle->SetDeviceContext( + places[i], platform::DeviceContextPool::Instance().Get(places[i])); + } + } +}; + +} // namespace details +} // namespace framework +} // namespace paddle + +REGISTER_PASS(fuse_all_reduce_op_pass, + paddle::framework::details::FuseAllReduceOpPass); diff --git a/paddle/fluid/framework/details/fused_all_reduce_op_handle.cc b/paddle/fluid/framework/details/fused_all_reduce_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..b90655184bcf31bbfc3100f5993acee655fedc55 --- /dev/null +++ b/paddle/fluid/framework/details/fused_all_reduce_op_handle.cc @@ -0,0 +1,248 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h" +#include +#include +#include "paddle/fluid/framework/details/container_cast.h" +#include "paddle/fluid/framework/details/reduce_and_gather.h" +#include "paddle/fluid/framework/details/variable_visitor.h" +#include "paddle/fluid/platform/profiler.h" + +DEFINE_bool(skip_fused_all_reduce_check, false, ""); +namespace paddle { +namespace framework { +namespace details { + +typedef std::vector>> + GradientAndLoDTensor; + +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) +FusedAllReduceOpHandle::FusedAllReduceOpHandle( + ir::Node *node, const std::vector &local_scopes, + const std::vector &places, const size_t num_of_all_reduce, + const platform::NCCLContextMap *ctxs) + : OpHandleBase(node), + local_scopes_(local_scopes), + places_(places), + num_of_all_reduce_(num_of_all_reduce), + nccl_ctxs_(ctxs) { + if (nccl_ctxs_) { + for (auto &p : places_) { + this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p)); + } + } + PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size()); +} +#else + +FusedAllReduceOpHandle::FusedAllReduceOpHandle( + ir::Node *node, const std::vector &local_scopes, + const std::vector &places, const size_t num_of_all_reduce) + : OpHandleBase(node), + local_scopes_(local_scopes), + places_(places), + num_of_all_reduce_(num_of_all_reduce) { + PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size()); +} + +#endif + +void FusedAllReduceOpHandle::RunImpl() { + platform::RecordEvent record_event(Name()); + + VLOG(4) << this->DebugString(); + + WaitInputVarGenerated(); + // The input: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)... + // The output: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)... + auto in_var_handles = DynamicCast(this->Inputs()); + auto out_var_handles = DynamicCast(this->Outputs()); + + size_t place_num = places_.size(); + PADDLE_ENFORCE_EQ( + in_var_handles.size(), place_num * num_of_all_reduce_, + "The NoDummyInputSize should be equal to the number of places."); + PADDLE_ENFORCE_EQ( + in_var_handles.size(), out_var_handles.size(), + "The NoDummyInputSize and NoDummyOutputSize should be equal."); + + GradientAndLoDTensor grads_tensor; + grads_tensor.resize(place_num); + + int64_t numel = -1; + auto dtype = static_cast(0); + for (size_t scope_idx = 0; scope_idx < local_scopes_.size(); ++scope_idx) { + auto &g_tensor = grads_tensor.at(scope_idx); + g_tensor.reserve(num_of_all_reduce_); + + GetGradLoDTensor(scope_idx, in_var_handles, out_var_handles, &g_tensor); + + int64_t element_num = 0; + framework::proto::VarType::Type ele_dtype = + static_cast(0); + GetDTypeAndNumel(g_tensor, &ele_dtype, &element_num); + + if (numel == -1) { + numel = element_num; + } + if (dtype == static_cast(0)) { + dtype = ele_dtype; + PADDLE_ENFORCE_NE(ele_dtype, + static_cast(0)); + } + PADDLE_ENFORCE_EQ(ele_dtype, dtype); + + // Check whether the address space is contiguous. + std::sort( + g_tensor.begin(), g_tensor.end(), + [](const std::pair &grad1, + const std::pair &grad2) -> bool { + return grad1.second->data() < grad2.second->data(); + }); + + for (size_t k = 1; k < g_tensor.size(); ++k) { + const void *pre_address = g_tensor.at(k - 1).second->data(); + int64_t len = g_tensor.at(k - 1).second->numel(); + auto offset = len * framework::SizeOfType(dtype); + void *next_address = reinterpret_cast( + reinterpret_cast(pre_address) + offset); + const void *cur_address = g_tensor.at(k).second->data(); + VLOG(10) << k << ", " + << " pre_address(" << g_tensor.at(k - 1).first + << "): " << pre_address << ", cur_address(" + << g_tensor.at(k).first << "): " << cur_address + << ", offset:" << offset << ", " << next_address << ", " + << cur_address; + PADDLE_ENFORCE_EQ(next_address, cur_address); + } + } + + if (!FLAGS_skip_fused_all_reduce_check) { + for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) { + for (size_t j = 1; j < num_of_all_reduce_; ++j) { + PADDLE_ENFORCE_EQ(grads_tensor.at(0).at(j).first, + grads_tensor.at(scope_idx).at(j).first); + } + } + } + + std::vector lod_tensor_data; + for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) { + auto data = grads_tensor.at(scope_idx).at(0).second->data(); + lod_tensor_data.emplace_back(data); + } + + if (platform::is_gpu_place(places_[0])) { +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr."); + int nccl_dtype = platform::ToNCCLDataType(dtype); + std::vector> all_reduce_calls; + for (size_t i = 0; i < local_scopes_.size(); ++i) { + auto &p = places_[i]; + void *buffer = const_cast(lod_tensor_data.at(i)); + + int dev_id = boost::get(p).device; + auto &nccl_ctx = nccl_ctxs_->at(dev_id); + auto stream = nccl_ctx.stream(); + auto comm = nccl_ctx.comm_; + all_reduce_calls.emplace_back([=] { + PADDLE_ENFORCE(platform::dynload::ncclAllReduce( + buffer, buffer, numel, static_cast(nccl_dtype), + ncclSum, comm, stream)); + }); + } + + this->RunAndRecordEvent([&] { + if (all_reduce_calls.size() == 1UL) { + // Do not use NCCLGroup when manage NCCL by per thread per device + all_reduce_calls[0](); + } else { + platform::NCCLGroupGuard guard; + for (auto &call : all_reduce_calls) { + call(); + } + } + }); +#else + PADDLE_THROW("Not compiled with CUDA"); +#endif + } else { + // Special handle CPU only Operator's gradient. Like CRF + auto grad_name = grads_tensor.at(0).at(0).first; + auto &trg = *this->local_scopes_[0] + ->FindVar(kLocalExecScopeName) + ->Get() + ->FindVar(grad_name) + ->GetMutable(); + + // Reduce All data to trg in CPU + ReduceBufferData func(lod_tensor_data, trg.data(), numel); + VisitDataType(trg.type(), func); + + for (size_t i = 1; i < local_scopes_.size(); ++i) { + auto &scope = + *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get(); + auto &p = places_[i]; + auto *var = scope.FindVar(grad_name); + auto *dev_ctx = dev_ctxes_.at(p); + size_t size = numel * SizeOfType(trg.type()); + RunAndRecordEvent(p, [&trg, var, dev_ctx, p, size] { + auto dst_ptr = var->GetMutable()->data(); + platform::CPUPlace cpu_place; + memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data(), size); + }); + } + } +} + +void FusedAllReduceOpHandle::GetGradLoDTensor( + const size_t &scope_idx, const std::vector &in_var_handles, + const std::vector &out_var_handles, + std::vector> *grad_tensor) const { + auto *local_scope = + local_scopes_.at(scope_idx)->FindVar(kLocalExecScopeName)->Get(); + size_t place_num = places_.size(); + + for (size_t j = 0; j < in_var_handles.size(); j += place_num) { + auto var_name = in_var_handles[j]->name(); + PADDLE_ENFORCE_EQ(var_name, out_var_handles[j]->name()); + auto &lod_tensor = local_scope->FindVar(var_name)->Get(); + PADDLE_ENFORCE_EQ(lod_tensor.place(), places_.at(scope_idx)); + grad_tensor->emplace_back(std::make_pair(var_name, &lod_tensor)); + } +} + +void FusedAllReduceOpHandle::GetDTypeAndNumel( + const std::vector> &grad_tensor, + proto::VarType::Type *dtype, int64_t *numel) const { + *numel = 0; + for (size_t i = 0; i < grad_tensor.size(); ++i) { + // Get element number + int64_t len = grad_tensor.at(i).second->numel(); + PADDLE_ENFORCE_GT(len, 0); + *numel += len; + + // Get dtype + auto ele_type = grad_tensor.at(i).second->type(); + if (i == 0) { + *dtype = ele_type; + } + PADDLE_ENFORCE_EQ(ele_type, *dtype); + } +} + +std::string FusedAllReduceOpHandle::Name() const { return "fused_all_reduce"; } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/fused_all_reduce_op_handle.h b/paddle/fluid/framework/details/fused_all_reduce_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..79772c61f8c8b7abe3cf26dd8a94c2acdc0872a0 --- /dev/null +++ b/paddle/fluid/framework/details/fused_all_reduce_op_handle.h @@ -0,0 +1,76 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) +#include "paddle/fluid/platform/nccl_helper.h" +#endif + +namespace paddle { +namespace framework { +namespace details { + +struct FusedAllReduceOpHandle : public OpHandleBase { +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + FusedAllReduceOpHandle(ir::Node *node, + const std::vector &local_scopes, + const std::vector &places, + const size_t num_of_all_reduce, + const platform::NCCLContextMap *ctxs); +#else + FusedAllReduceOpHandle(ir::Node *node, + const std::vector &local_scopes, + const std::vector &places, + const size_t num_of_all_reduce); +#endif + std::string Name() const override; + + // Delay and buffer nccl_all_reduce together can significantly increase + // performance. Disable this feature by returning false. + bool IsMultiDeviceTransfer() override { return true; }; + + protected: + void RunImpl() override; + + private: + std::vector local_scopes_; + std::vector places_; + size_t num_of_all_reduce_; +#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) + const platform::NCCLContextMap *nccl_ctxs_; +#endif + + // Check the dtype of the input + void GetDTypeAndNumel( + const std::vector> &g_tensor, + proto::VarType::Type *dtype, int64_t *total_num) const; + + // Get gradient's name and LoDTensor + void GetGradLoDTensor(const size_t &scope_idx, + const std::vector &in_var_handles, + const std::vector &out_var_handles, + std::vector> + *grad_tensor) const; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/graph_test_base.h b/paddle/fluid/framework/details/graph_test_base.h index 126959bcd80a4677f76b7cff677a82a319f7cfb3..d139f8488309eecf89c924a346ab0e574edc86dc 100644 --- a/paddle/fluid/framework/details/graph_test_base.h +++ b/paddle/fluid/framework/details/graph_test_base.h @@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker { class DummyVarTypeInference : public VarTypeInference { public: - void operator()(const OpDesc& op_desc, BlockDesc* block) const override { - auto& inputs = op_desc.Input("X"); - auto type = block->Var(inputs.front())->GetType(); - auto out_var_name = op_desc.Output("Out").front(); - block->Var(out_var_name)->SetType(type); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto& inputs = ctx->Input("X"); + auto type = ctx->GetType(inputs.front()); + auto out_var_name = ctx->Output("Out").front(); + ctx->SetType(out_var_name, type); } }; diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.cc b/paddle/fluid/framework/details/multi_devices_graph_pass.cc index 478d2ffbcf2988487893984284d4597f018f0ca0..e3cd2340c97c5a3e1315e4eefc0b6f6475d247db 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.cc @@ -11,18 +11,17 @@ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. +#include "paddle/fluid/framework/details/multi_devices_graph_pass.h" #include #include #include #include #include - #include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/data_balance_op_handle.h" #include "paddle/fluid/framework/details/fused_broadcast_op_handle.h" -#include "paddle/fluid/framework/details/multi_devices_graph_pass.h" #include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/rpc_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" @@ -134,21 +133,26 @@ void AddOutputToLeafOps(ir::Graph *graph) { } } // namespace +void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {} + void MultiDevSSAGraphBuilderBase::Init() const { all_vars_.clear(); loss_var_name_ = Get(kLossVarName); + VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_; places_ = Get>(kPlaces); local_scopes_ = Get>(kLocalScopes); strategy_ = Get(kStrategy); #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) - nccl_ctxs_ = &Get("nccl_ctxs"); + nccl_ctxs_ = &Get(kNCCLCtxs); #endif + PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size()); } std::unique_ptr MultiDevSSAGraphBuilderBase::ApplyImpl( std::unique_ptr graph) const { Init(); + CheckGraph(*graph); std::vector sorted_ops = SortOperations(*graph); auto nodes = graph->ReleaseNodes(); @@ -166,7 +170,6 @@ std::unique_ptr MultiDevSSAGraphBuilderBase::ApplyImpl( result.Set(kGraphOps, new GraphOps); bool is_forwarding = true; - bool insert_collection_ops = NeedCollectiveOps(); for (ir::Node *node : sorted_ops) { if (DealWithSpecialOp(&result, node)) { @@ -185,8 +188,8 @@ std::unique_ptr MultiDevSSAGraphBuilderBase::ApplyImpl( CreateComputationalOps(&result, node, places_.size()); } - // Insert collection ops - if (!is_forwarding && insert_collection_ops) { + // Insert collective ops if nranks > 1 + if (!is_forwarding && Get(kNRanks) > 1) { try { bool is_bk_op = static_cast(boost::get(node->Op()->GetAttr( @@ -200,13 +203,13 @@ std::unique_ptr MultiDevSSAGraphBuilderBase::ApplyImpl( boost::get>(node->Op()->GetNullableAttr( OpProtoAndCheckerMaker::OpRoleVarAttrName())); PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0); - for (size_t i = 0; i < backward_vars.size(); i += 2) { auto &p_name = backward_vars[i]; auto &g_name = backward_vars[i + 1]; VLOG(10) << "Bcast " << g_name << " for parameter " << p_name; - - InsertCollectiveOp(&result, p_name, g_name); + if (NeedCollectiveForGrad(g_name, sorted_ops)) { + InsertCollectiveOp(&result, p_name, g_name); + } } } catch (boost::bad_get e) { } @@ -226,6 +229,7 @@ std::unique_ptr MultiDevSSAGraphBuilderBase::ApplyImpl( * Only variables should be the leaves of graph. */ AddOutputToLeafOps(&result); + result.Erase(kGraphOps); return graph; } @@ -258,6 +262,11 @@ void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp( } } +bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result, + ir::Node *node) const { + return false; +} + std::vector MultiDevSSAGraphBuilderBase::SortOperations( const ir::Graph &graph) const { return ir::TopologySortOperations(graph); @@ -271,8 +280,20 @@ bool MultiDevSSAGraphBuilderBase::UseGPU() const { return use_gpu; } -bool MultiDevSSAGraphBuilderBase::NeedCollectiveOps() const { - return Get(kNRanks) > 1; +bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad( + const std::string &grad_name, std::vector ops) const { + // if we have allreduce_op for current gradient variable in the graph, + // then we don't need to add allreduce_op_handle for this gradient + // NOTE: This is for the case that all gradients should add collective ops + for (auto *node : ops) { + if (node->Op()->Type() != "allreduce") continue; + for (auto in_name : node->Op()->InputArgumentNames()) { + if (in_name == grad_name) { + return false; + } + } + } + return true; } void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result, @@ -496,20 +517,17 @@ VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result, } bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const { - return boost::get( + return !loss_var_name_.empty() && node->Op() && + boost::get( node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) == (static_cast(OpRole::kBackward) | - static_cast(OpRole::kLoss)) && - !loss_var_name_.empty(); // If loss_var is empty. This is test mode + static_cast(OpRole::kLoss)); } bool MultiDevSSAGraphBuilderBase::IsSparseGradient( const std::string &og) const { PADDLE_ENFORCE(all_vars_.count(og) != 0); - if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) { - return true; - } - return false; + return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS; } void AllReduceSSAGraphBuilder::InsertCollectiveOp( @@ -995,7 +1013,7 @@ static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) { REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass, paddle::framework::details::ReduceSSAGraphBuilder); REGISTER_MULTI_DEVICES_PASS( - allreduce_mode_multi_devices_pass, + all_reduce_mode_multi_devices_pass, paddle::framework::details::AllReduceSSAGraphBuilder); REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass, paddle::framework::details::DistSSAGraphBuilder); diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.h b/paddle/fluid/framework/details/multi_devices_graph_pass.h index 6d4386538ea7d0cc318647c92282af9d598fa699..0ee3a0606291797b8c238ccbface591e30bfe502 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.h +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.h @@ -14,7 +14,10 @@ #pragma once +#include #include +#include +#include #include #include @@ -31,12 +34,6 @@ namespace framework { class Scope; namespace details { -constexpr char kLossVarName[] = "loss_var_name"; -constexpr char kPlaces[] = "places"; -constexpr char kLocalScopes[] = "local_scopes"; -constexpr char kStrategy[] = "strategy"; -constexpr char kNRanks[] = "nranks"; - class MultiDevSSAGraphBuilderBase : public ir::Pass { protected: std::unique_ptr ApplyImpl( @@ -44,18 +41,21 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass { virtual void Init() const; + virtual void CheckGraph(const ir::Graph &graph) const; + virtual std::vector SortOperations(const ir::Graph &graph) const; virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name, const std::string &g_name) const = 0; - virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const = 0; + virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const; virtual void InsertPostprocessOps(ir::Graph *result) const = 0; bool UseGPU() const; - bool NeedCollectiveOps() const; + bool NeedCollectiveForGrad(const std::string &grad_name, + std::vector ops) const; bool IsScaleLossOp(ir::Node *node) const; @@ -109,10 +109,6 @@ class AllReduceSSAGraphBuilder : public MultiDevSSAGraphBuilderBase { virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name, const std::string &g_name) const; - virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const { - return false; - } - virtual void InsertPostprocessOps(ir::Graph *result) const {} }; diff --git a/paddle/fluid/framework/details/multi_devices_helper.h b/paddle/fluid/framework/details/multi_devices_helper.h index 9afbb91005c9c3a9d2e185f4dfa901ebf812ee19..ab5e099023382c4e28a9613d321ea8dc182d3534 100644 --- a/paddle/fluid/framework/details/multi_devices_helper.h +++ b/paddle/fluid/framework/details/multi_devices_helper.h @@ -16,6 +16,9 @@ #include #include +#include +#include +#include #include #include "paddle/fluid/framework/details/op_handle_base.h" @@ -44,6 +47,26 @@ const char kGraphVars[] = "vars"; typedef std::unordered_set GraphDepVars; const char kGraphDepVars[] = "dep_vars"; +constexpr char kNCCLCtxs[] = "nccl_ctxs"; + +constexpr char kLossVarName[] = "loss_var_name"; +constexpr char kPlaces[] = "places"; +constexpr char kLocalScopes[] = "local_scopes"; +constexpr char kStrategy[] = "strategy"; +constexpr char kNRanks[] = "nranks"; + +typedef std::unordered_set FusedVars; +constexpr char kFusedVars[] = "fused_vars"; + +typedef std::vector> ParamsAndGrads; +constexpr char kParamsAndGrads[] = "params_grads"; + +typedef std::vector>> + GroupGradsAndParams; +constexpr char kGroupGradsAndParams[] = "group_grads_params"; + +constexpr char kFusedVarNamePrefix[] = "@FUSEDVAR@"; + } // namespace details } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/details/op_registry.h b/paddle/fluid/framework/details/op_registry.h index 0901e59f9786b43361e7a570f8c2a07be54c1ac2..e13ff99f3fdb564141531b401565c932fa1f3dab 100644 --- a/paddle/fluid/framework/details/op_registry.h +++ b/paddle/fluid/framework/details/op_registry.h @@ -16,6 +16,8 @@ limitations under the License. */ #include #include +#include +#include #include #include "paddle/fluid/framework/grad_op_desc_maker.h" #include "paddle/fluid/framework/inplace_op_inference.h" @@ -127,9 +129,9 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) { + info->infer_var_type_ = [](InferVarTypeContext* context) { T inference; - inference(fwd_op, block); + inference(context); }; } }; diff --git a/paddle/fluid/framework/details/reduce_and_gather.h b/paddle/fluid/framework/details/reduce_and_gather.h index 2e5256fbd49a3f8c72840cd55dada4301cb04eb9..0de8e436518ea353a185087b0e4668b5d200c966 100644 --- a/paddle/fluid/framework/details/reduce_and_gather.h +++ b/paddle/fluid/framework/details/reduce_and_gather.h @@ -53,6 +53,31 @@ struct ReduceLoDTensor { } }; +struct ReduceBufferData { + const std::vector &src_data_; + void *dst_data_; + int64_t numel_; + + ReduceBufferData(const std::vector &src, void *dst, + int64_t numel) + : src_data_(src), dst_data_(dst), numel_(numel) {} + + template + void apply() const { + T *dst_data = reinterpret_cast(dst_data_); + for (size_t i = 0; i < src_data_.size(); ++i) { + auto srd_data = reinterpret_cast(src_data_[i]); + VLOG(10) << "dst: " << dst_data_ << ", " << srd_data; + if (srd_data == dst_data_) { + continue; + } + + std::transform(srd_data, srd_data + numel_, dst_data, dst_data, + [](T a, T b) -> T { return a + b; }); + } + } +}; + inline void GatherLocalSelectedRows( const std::vector &src_selecte_rows_, const std::vector &in_places, diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index 3808dd5fbaeaa3671e50bb31ea532251a1e9f6fc..8d2cc5adec1fe3fb9280981ef2d128fb0803fa24 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -46,6 +46,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass) pass_library(graph_to_program_pass base) pass_library(graph_viz_pass base) pass_library(lock_free_optimize_pass base) +pass_library(cpu_quantize_placement_pass base) pass_library(cpu_quantize_pass inference) pass_library(cpu_quantize_squash_pass inference) pass_library(fc_fuse_pass inference) @@ -103,6 +104,7 @@ cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS g cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto) cc_test(test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto) cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass) +cc_test(test_cpu_quantize_placement_pass SRCS cpu_quantize_placement_pass_tester.cc DEPS cpu_quantize_placement_pass) cc_test(test_cpu_quantize_pass SRCS cpu_quantize_pass_tester.cc DEPS cpu_quantize_pass naive_executor) cc_test(test_cpu_quantize_squash_pass SRCS cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor) if(NOT WIN32) diff --git a/paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc b/paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..50bbe4915b3502a867be397ae0922d982108d12c --- /dev/null +++ b/paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc @@ -0,0 +1,58 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h" +#include +#include + +namespace paddle { +namespace framework { +namespace ir { + +std::unique_ptr CPUQuantizePlacementPass::ApplyImpl( + std::unique_ptr graph) const { + VLOG(3) << "Marks operators which are to be quantized."; + const auto& excluded_ids_list = + Get>("quantize_excluded_op_ids"); + const auto& op_types_list = + Get>("quantize_enabled_op_types"); + for (const Node* n : graph->Nodes()) { + if (n->IsOp()) { + if (std::find(excluded_ids_list.begin(), excluded_ids_list.end(), + n->id()) != excluded_ids_list.end()) + continue; + auto* op = n->Op(); + if (op->HasAttr("use_quantizer") || op->HasProtoAttr("use_quantizer")) { + if (op_types_list.empty()) { + op->SetAttr("use_quantizer", true); + } else if (std::find(op_types_list.begin(), op_types_list.end(), + n->Name()) != op_types_list.end()) { + op->SetAttr("use_quantizer", true); + } + } + } + } + return graph; +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(cpu_quantize_placement_pass, + paddle::framework::ir::CPUQuantizePlacementPass) + // a vector of operator type names to be quantized ("conv2d" etc.) + .RequirePassAttr("quantize_enabled_op_types") + // a vector of operator ids that are to be excluded from quantization + .RequirePassAttr("quantize_excluded_op_ids"); diff --git a/paddle/fluid/framework/ir/cpu_quantize_placement_pass.h b/paddle/fluid/framework/ir/cpu_quantize_placement_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..ef3861b2493b5b82620f8bec6e808c0c921a9680 --- /dev/null +++ b/paddle/fluid/framework/ir/cpu_quantize_placement_pass.h @@ -0,0 +1,34 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/fluid/framework/ir/pass.h" + +namespace paddle { +namespace framework { +namespace ir { +/* + * Specifies which operators should be quantized. + */ +class CPUQuantizePlacementPass : public Pass { + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/ir/cpu_quantize_placement_pass_tester.cc b/paddle/fluid/framework/ir/cpu_quantize_placement_pass_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..5a4d622645a4377526351bbf4acbcea95a780d22 --- /dev/null +++ b/paddle/fluid/framework/ir/cpu_quantize_placement_pass_tester.cc @@ -0,0 +1,129 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h" + +#include +#include + +namespace paddle { +namespace framework { +namespace ir { + +void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name, + const std::vector& inputs, + const std::vector& outputs, + boost::tribool use_quantizer) { + auto* op = prog->MutableBlock(0)->AppendOp(); + + op->SetType(type); + + if (!boost::indeterminate(use_quantizer)) + op->SetAttr("use_quantizer", use_quantizer); + + if (type == "conv2d") { + op->SetAttr("name", name); + op->SetInput("Input", {inputs[0]}); + op->SetInput("Filter", {inputs[1]}); + op->SetInput("Bias", {inputs[2]}); + } else if (type == "relu") { + op->SetInput("X", inputs); + } else if (type == "concat") { + op->SetAttr("axis", 1); + op->SetInput("X", {inputs[0], inputs[1]}); + } else if (type == "pool2d") { + op->SetInput("X", {inputs[0]}); + } else { + FAIL() << "Unexpected operator type."; + } + op->SetOutput("Out", {outputs[0]}); +} + +// operator use_quantizer +// --------------------------------------- +// (a,b)->concat->c none +// (c,weights,bias)->conv->f false +// f->relu->g none +// g->pool->h false +// (h,weights2,bias2)->conv->k false +// k->pool->l false +ProgramDesc BuildProgramDesc() { + ProgramDesc prog; + + for (auto& v : + std::vector({"a", "b", "c", "weights", "bias", "f", "g", + "h", "weights2", "bias2", "k", "l"})) { + auto* var = prog.MutableBlock(0)->Var(v); + var->SetType(proto::VarType::SELECTED_ROWS); + if (v == "weights" || v == "bias") { + var->SetPersistable(true); + } + } + + SetOp(&prog, "concat", "concat1", {"a", "b"}, {"c"}, boost::indeterminate); + SetOp(&prog, "conv2d", "conv1", {"c", "weights", "bias"}, {"f"}, false); + SetOp(&prog, "relu", "relu1", {"f"}, {"g"}, boost::indeterminate); + SetOp(&prog, "pool2d", "pool1", {"g"}, {"h"}, false); + SetOp(&prog, "conv2d", "conv2", {"h", "weights2", "bias2"}, {"k"}, false); + SetOp(&prog, "pool2d", "pool2", {"k"}, {"l"}, false); + + return prog; +} + +void MainTest(std::initializer_list quantize_enabled_op_types, + std::initializer_list quantize_excluded_op_ids, + unsigned expected_use_quantizer_true_count) { + auto prog = BuildProgramDesc(); + + std::unique_ptr graph(new ir::Graph(prog)); + + auto pass = PassRegistry::Instance().Get("cpu_quantize_placement_pass"); + pass->Set("quantize_enabled_op_types", + new std::unordered_set(quantize_enabled_op_types)); + pass->Set("quantize_excluded_op_ids", + new std::unordered_set(quantize_excluded_op_ids)); + + graph = pass->Apply(std::move(graph)); + + unsigned use_quantizer_true_count = 0; + + for (auto* node : graph->Nodes()) { + if (node->IsOp()) { + auto* op = node->Op(); + if (op->HasAttr("use_quantizer") && + boost::get(op->GetAttr("use_quantizer"))) { + ++use_quantizer_true_count; + } + } + } + + EXPECT_EQ(use_quantizer_true_count, expected_use_quantizer_true_count); +} + +TEST(QuantizerPlacementPass, enabled_pool) { MainTest({"pool2d"}, {}, 2); } + +TEST(QuantizerPlacementPass, enabled_conv_excluded_one) { + MainTest({"conv2d"}, {4}, 1); +} + +TEST(QuantizerPlacementPass, excluded_none) { + // 2 conv + 2 pool + MainTest({}, {}, 4); +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +USE_PASS(cpu_quantize_placement_pass); diff --git a/paddle/fluid/framework/ir/graph_test.cc b/paddle/fluid/framework/ir/graph_test.cc index 7ed2f96eb24239d87965192d73f4ba200ff5dbeb..a95588a57b434763fb0f01e33528ef15fd1aa42b 100644 --- a/paddle/fluid/framework/ir/graph_test.cc +++ b/paddle/fluid/framework/ir/graph_test.cc @@ -43,20 +43,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker { class SumOpVarTypeInference : public VarTypeInference { public: - void operator()(const OpDesc &op_desc, BlockDesc *block) const override { - auto &inputs = op_desc.Input("X"); + void operator()(InferVarTypeContext *ctx) const override { + auto &inputs = ctx->Input("X"); auto default_var_type = proto::VarType::SELECTED_ROWS; bool any_input_is_lod_tensor = std::any_of( - inputs.begin(), inputs.end(), [block](const std::string &name) { - return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR; + inputs.begin(), inputs.end(), [&ctx](const std::string &name) { + return ctx->GetType(name) == proto::VarType::LOD_TENSOR; }); if (any_input_is_lod_tensor) { default_var_type = proto::VarType::LOD_TENSOR; } - auto out_var_name = op_desc.Output("Out").front(); - block->Var(out_var_name)->SetType(default_var_type); + auto out_var_name = ctx->Output("Out").front(); + ctx->SetType(out_var_name, default_var_type); } }; @@ -71,7 +71,7 @@ class DummyOpMaker : public OpProtoAndCheckerMaker { class DummyOpVarTypeInference : public VarTypeInference { public: - void operator()(const OpDesc &op_desc, BlockDesc *block) const override {} + void operator()(framework::InferVarTypeContext *ctx) const override {} }; } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/op_desc.cc b/paddle/fluid/framework/op_desc.cc index 0e7b0cbeb98f3b6bbf0b37f507fc6022be692bb1..8f9c6cb5e924a7f35451f67e59c2455f057188e7 100644 --- a/paddle/fluid/framework/op_desc.cc +++ b/paddle/fluid/framework/op_desc.cc @@ -24,6 +24,7 @@ limitations under the License. */ #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/shape_inference.h" +#include "paddle/fluid/framework/var_type_inference.h" namespace paddle { namespace framework { @@ -677,7 +678,8 @@ void OpDesc::InferVarType(BlockDesc *block) const { // var type inference. Hence, we don't do any "default" setting here. auto &info = OpInfoMap::Instance().Get(this->Type()); if (info.infer_var_type_) { - info.infer_var_type_(*this, block); + InferVarTypeContext context(this, block); + info.infer_var_type_(&context); } } diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 56f108cea2e5d7dadbea2e2cbec39dbe7f4ba094..20a8c47d5d85f5962d697b48ec1bdaad74cbe4d7 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -254,18 +254,29 @@ ParallelExecutor::ParallelExecutor(const std::vector &places, member_->places_, nccl_id, build_strategy.num_trainers_, build_strategy.trainer_id_)); - std::unique_ptr dev_nccl_ctxs; - dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_)); - // Initialize device context's nccl comm - // Note, more than one ParallelExecutor with same place, the nccl comm will + // Initialize device context's nccl comm, will be used by normal + // Operators like sync_batch_norm, and collective ops. + // NOTE: more than one ParallelExecutor with same place, the nccl comm will // be rewrite and there will be some problem. + // NOTE: NCCL group-calls and non-group-calls can not use the same + // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use + // same communicators. + std::unique_ptr dev_nccl_ctxs; + if (nccl_id == nullptr) { + dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_)); + } for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) { - auto &nccl_ctx = dev_nccl_ctxs->at(dev_id); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto *dev_ctx = static_cast( pool.Get(member_->places_[dev_id])); - dev_ctx->set_nccl_comm(nccl_ctx.comm()); + if (nccl_id != nullptr) { + auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]); + dev_ctx->set_nccl_comm(nccl_ctx.comm()); + } else { + auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]); + dev_ctx->set_nccl_comm(nccl_ctx.comm()); + } } #else PADDLE_THROW("Not compiled with CUDA"); diff --git a/paddle/fluid/framework/scope.cc b/paddle/fluid/framework/scope.cc index 87f0f307d30bc90a43a698c3766b16c975f0635e..d79bf25518bbe624f2913839ec7d7d80816b3b69 100644 --- a/paddle/fluid/framework/scope.cc +++ b/paddle/fluid/framework/scope.cc @@ -34,7 +34,7 @@ DEFINE_double( "Memory size threshold (GB) when the garbage collector clear tensors." "Disabled when this value is less than 0"); -DEFINE_bool(fast_eager_deletion_mode, false, +DEFINE_bool(fast_eager_deletion_mode, true, "Fast eager deletion mode. If enabled, memory would release " "immediately without waiting GPU kernel ends."); diff --git a/paddle/fluid/framework/tensor_util.cc b/paddle/fluid/framework/tensor_util.cc index a7f09df4917532e7261cee471c711897c8eb3447..5f21dae60586e926472fc512eca7bcbb55dc8eda 100644 --- a/paddle/fluid/framework/tensor_util.cc +++ b/paddle/fluid/framework/tensor_util.cc @@ -44,6 +44,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, << dst_place; return; } +#ifdef PADDLE_WITH_MKLDNN + if (src.layout() == DataLayout::kMKLDNN) { + dst->set_mkldnn_prim_desc(src.get_mkldnn_prim_desc()); + } +#endif memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size); } diff --git a/paddle/fluid/framework/type_defs.h b/paddle/fluid/framework/type_defs.h index d02c699b979d7693bd83fd43fc73f7e0aeddb0cc..f55520901c53fcc5bea90c5758f401f021a5c723 100644 --- a/paddle/fluid/framework/type_defs.h +++ b/paddle/fluid/framework/type_defs.h @@ -27,6 +27,7 @@ namespace framework { class OperatorBase; class OpDesc; class InferShapeContext; +class InferVarTypeContext; class BlockDesc; class Variable; @@ -53,7 +54,7 @@ using GradOpMakerFN = std::function>( const std::vector& grad_block)>; using InferVarTypeFN = - std::function; + std::function; using InferShapeFN = std::function; diff --git a/paddle/fluid/framework/var_type_inference.h b/paddle/fluid/framework/var_type_inference.h index 64236b78d2e390ea5f6c43c76a4b33b62c67629f..2e9c64d3e6854bf70c0aee06128b9f1b7c8c7439 100644 --- a/paddle/fluid/framework/var_type_inference.h +++ b/paddle/fluid/framework/var_type_inference.h @@ -14,6 +14,8 @@ limitations under the License. */ #pragma once #include +#include +#include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/type_defs.h" @@ -21,26 +23,123 @@ limitations under the License. */ namespace paddle { namespace framework { +class OpDesc; +class BlockDesc; +// default infer var type context +class InferVarTypeContext { + public: + InferVarTypeContext(const OpDesc* op, BlockDesc* block) + : op_(op), block_(block) {} + + virtual ~InferVarTypeContext() {} + + virtual Attribute GetAttr(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(op_); + return op_->GetAttr(name); + } + + virtual bool HasVar(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindVarRecursive(name) != nullptr; + } + + virtual bool HasInput(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(op_); + return op_->Inputs().count(name) > 0; + } + + virtual bool HasOutput(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(op_); + return op_->Outputs().count(name) > 0; + } + + virtual const std::vector& Input(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(op_); + return op_->Input(name); + } + + virtual const std::vector& Output( + const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(op_); + return op_->Output(name); + } + + virtual proto::VarType::Type GetType(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindRecursiveOrCreateVar(name).GetType(); + } + + virtual void SetType(const std::string& name, proto::VarType::Type type) { + PADDLE_ENFORCE_NOT_NULL(block_); + block_->FindRecursiveOrCreateVar(name).SetType(type); + } + + virtual proto::VarType::Type GetDataType(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindRecursiveOrCreateVar(name).GetDataType(); + } + + virtual void SetDataType(const std::string& name, proto::VarType::Type type) { + PADDLE_ENFORCE_NOT_NULL(block_); + block_->FindRecursiveOrCreateVar(name).SetDataType(type); + } + + virtual std::vector GetDataTypes( + const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindRecursiveOrCreateVar(name).GetDataTypes(); + } + + virtual void SetDataTypes( + const std::string& name, + const std::vector& multiple_data_type) { + PADDLE_ENFORCE_NOT_NULL(block_); + block_->FindRecursiveOrCreateVar(name).SetDataTypes(multiple_data_type); + } + + virtual std::vector GetShape(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindRecursiveOrCreateVar(name).GetShape(); + } + + virtual void SetShape(const std::string& name, + const std::vector& dims) { + PADDLE_ENFORCE_NOT_NULL(block_); + block_->FindRecursiveOrCreateVar(name).SetShape(dims); + } + + virtual int32_t GetLoDLevel(const std::string& name) const { + PADDLE_ENFORCE_NOT_NULL(block_); + return block_->FindRecursiveOrCreateVar(name).GetLoDLevel(); + } + + virtual void SetLoDLevel(const std::string& name, int32_t lod_level) { + PADDLE_ENFORCE_NOT_NULL(block_); + block_->FindRecursiveOrCreateVar(name).SetLoDLevel(lod_level); + } + + protected: + const OpDesc* op_; + BlockDesc* block_; +}; + class VarTypeInference { public: virtual ~VarTypeInference() {} - virtual void operator()(const OpDesc& op_desc, BlockDesc* block) const = 0; + virtual void operator()(InferVarTypeContext* context) const = 0; // NOLINT }; class PassInDtypeAndVarTypeToOutput : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const final { + void operator()(framework::InferVarTypeContext* ctx) const final { // NOLINT auto in_out_var_names = this->GetInputOutputWithSameType(); for (auto& i_o_n : in_out_var_names) { - auto& x_name = op_desc.Input(i_o_n.first).at(0); - auto& out_name = op_desc.Output(i_o_n.second).at(0); + auto& x_name = ctx->Input(i_o_n.first).at(0); + auto& out_name = ctx->Output(i_o_n.second).at(0); - auto& x = block->FindRecursiveOrCreateVar(x_name); - auto& out = block->FindRecursiveOrCreateVar(out_name); - out.SetType(x.GetType()); - out.SetDataType(x.GetDataType()); + ctx->SetType(out_name, ctx->GetType(x_name)); + ctx->SetDataType(out_name, ctx->GetDataType(x_name)); } } diff --git a/paddle/fluid/framework/var_type_inference_test.cc b/paddle/fluid/framework/var_type_inference_test.cc index 2a75394fca719196a9d53894b080598e942baa45..6bbb25a573d076d5ec6d6fd960a304639e9e3d49 100644 --- a/paddle/fluid/framework/var_type_inference_test.cc +++ b/paddle/fluid/framework/var_type_inference_test.cc @@ -44,20 +44,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker { class SumOpVarTypeInference : public VarTypeInference { public: - void operator()(const OpDesc &op_desc, BlockDesc *block) const override { - auto &inputs = op_desc.Input("X"); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto &inputs = ctx->Input("X"); auto default_var_type = proto::VarType::SELECTED_ROWS; bool any_input_is_lod_tensor = std::any_of( - inputs.begin(), inputs.end(), [block](const std::string &name) { - return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR; + inputs.begin(), inputs.end(), [&ctx](const std::string &name) { + return ctx->GetType(name) == proto::VarType::LOD_TENSOR; }); if (any_input_is_lod_tensor) { default_var_type = proto::VarType::LOD_TENSOR; } - auto out_var_name = op_desc.Output("Out").front(); - block->Var(out_var_name)->SetType(default_var_type); + auto out_var_name = ctx->Output("Out").front(); + ctx->SetType(out_var_name, default_var_type); } }; } // namespace framework diff --git a/paddle/fluid/imperative/layer.cc b/paddle/fluid/imperative/layer.cc index 3c7ddf08308ad40ed6106c7930bb409328d3048a..3d1de95f58ded4af7fcc3d4c75b4d5e1aa63f13f 100644 --- a/paddle/fluid/imperative/layer.cc +++ b/paddle/fluid/imperative/layer.cc @@ -218,7 +218,7 @@ std::map> OpBase::ApplyGrad() { "%s has no backward implementation", Type()); VLOG(3) << "apply op grad: " << Type(); - std::vector tmp_grad_outputs; + std::vector tmp_grad_outputs; if (backward_id_ > 0) { VLOG(3) << "py_layer_grad"; tmp_grad_outputs.resize(1); @@ -241,26 +241,62 @@ std::map> OpBase::ApplyGrad() { auto& outputs = tmp_grad_outputs[k][it.first]; outputs.reserve(it.second.size()); for (size_t i = 0; i < it.second.size(); ++i) { + VarBase* origin_grad_var_base = it.second[i]; + // Allocate a new variable - Variable* tmp_var = new framework::Variable(); - tmp_var->GetMutable(); - outputs.emplace_back(tmp_var); + VarBase* tmp_grad_var_base = new VarBase( + string::Sprintf("%s@IGrad", origin_grad_var_base->Name()), + origin_grad_var_base->DataType(), origin_grad_var_base->Dims(), + place_, true, false); + outputs.emplace_back(tmp_grad_var_base); } } - // Run grad op - framework::RuntimeContext ctx(grad_input_vars_[k], tmp_grad_outputs[k]); - // No need to do compile time infer shape here. // grad_op_desc_->InferShape(*block_); // grad_op_desc->InferVarType(block_); std::unique_ptr opbase = framework::OpRegistry::CreateOp(*grad_op_desc); + + auto& info = framework::OpInfoMap::Instance().Get(grad_op_desc->Type()); + if (info.infer_var_type_) { + RuntimeInferVarTypeContext infer_var_type_ctx( + &grad_input_vars_[k], &tmp_grad_outputs[k], &attrs_); + info.infer_var_type_(&infer_var_type_ctx); + } + framework::OperatorWithKernel* op_kernel = dynamic_cast(opbase.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); + // Run grad op + framework::VariableValueMap grad_invars_map; + framework::VariableValueMap grad_outvars_map; + + for (const auto& it : grad_input_vars_[k]) { + auto& grad_invars = grad_invars_map[it.first]; + grad_invars.reserve(it.second.size()); + for (const VarBase* grad_inp : it.second) { + PADDLE_ENFORCE_NOT_NULL(grad_inp->var_, "op %s input %s nullptr", + grad_op_desc->Type(), grad_inp->Name()); + + grad_invars.emplace_back(grad_inp->var_); + } + } + + for (const auto& it : tmp_grad_outputs[k]) { + auto& grad_outvars = grad_outvars_map[it.first]; + grad_outvars.reserve(it.second.size()); + for (VarBase* grad_out : it.second) { + PADDLE_ENFORCE_NOT_NULL(grad_out->var_, "op %s output %s nullptr", + grad_op_desc->Type(), grad_out->Name()); + + grad_outvars.emplace_back(grad_out->var_); + } + } + + framework::RuntimeContext ctx(grad_invars_map, grad_outvars_map); framework::Scope scope; PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_); p.op.RuntimeInferShape(scope, place_, ctx); @@ -277,8 +313,8 @@ std::map> OpBase::ApplyGrad() { PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size()); for (size_t i = 0; i < outputs.size(); ++i) { - framework::Variable* grad = outputs[i]; - framework::Variable* orig_grad = origin_outputs[i]; + framework::Variable* grad = outputs[i]->var_; + framework::Variable* orig_grad = origin_outputs[i]->var_; AddTo(grad, orig_grad, place_); delete grad; } @@ -326,28 +362,35 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) { int PyLayer::NumFuncs() { return py_funcs_.size(); } -std::vector PyLayer::Apply(int func_id, - const std::vector& inputs) { - std::vector invars; - for (const VarBase* in : inputs) { - invars.push_back(in->var_); - } +std::vector PyLayer::Apply( + int func_id, const std::vector& inputs) { PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); - return CallPythonFunc(py_funcs_[func_id], invars); + return CallPythonFunc(py_funcs_[func_id], inputs); } -std::vector PyLayer::ApplyGrad( - int func_id, const std::vector& inputs) { +std::vector PyLayer::ApplyGrad(int func_id, + const std::vector& inputs) { PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); - return CallPythonFunc(py_funcs_[func_id], inputs); + auto rets = CallPythonFunc(py_funcs_[func_id], inputs); + + std::vector outs; + outs.reserve(rets.size()); + for (size_t i = 0U; i != rets.size(); ++i) { + outs.emplace_back(new VarBase( + string::Sprintf("%s_out_%d", framework::GradVarName(PyLayer::kFwdOut), + i), + rets[i], nullptr, true)); + } + + return outs; } std::vector PyLayer::CallPythonFunc( - const py::object& callable, const std::vector& ins) { + const py::object& callable, const std::vector& ins) { py::gil_scoped_acquire guard; py::tuple in_args(ins.size()); for (size_t i = 0; i < ins.size(); ++i) { - const framework::LoDTensor& t = ins[i]->Get(); + const framework::LoDTensor& t = ins[i]->var_->Get(); in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr); } VLOG(3) << "pyfunc in " << py::len(in_args); @@ -357,6 +400,7 @@ std::vector PyLayer::CallPythonFunc( auto ret_tuple = py::cast(ret); size_t ret_num = py::len(ret_tuple); std::vector outs; + outs.reserve(ret_num); VLOG(3) << "pyfunc out " << ret_num; for (size_t i = 0; i < ret_num; ++i) { try { @@ -367,7 +411,7 @@ std::vector PyLayer::CallPythonFunc( auto* tensor = var->GetMutable(); tensor->ShareDataWith(*py_out_tensor); tensor->set_lod(py_out_tensor->lod()); - outs.push_back(var); + outs.emplace_back(var); } catch (py::cast_error&) { PADDLE_THROW("The %d-th output must be LoDTensor", i); } diff --git a/paddle/fluid/imperative/layer.h b/paddle/fluid/imperative/layer.h index 27cb1c84f568867506afc0ca5ce6eb1b28447efe..72c548d5e92dec3ec2638904f508c2777ee327c6 100644 --- a/paddle/fluid/imperative/layer.h +++ b/paddle/fluid/imperative/layer.h @@ -18,14 +18,16 @@ #include "paddle/fluid/framework/python_headers.h" // clang-format on -#include // NOLINT -#include // NOLINT -#include // NOLINT -#include // NOLINT +#include // NOLINT +#include // NOLINT +#include // NOLINT +#include // NOLINT +#include // NOLINT #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/var_desc.h" +#include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/operators/math/math_function.h" @@ -135,13 +137,13 @@ class VarBase { persistable) {} private: + // TODO(minqiyang): need support SelectedRows VarBase(const std::string& name, framework::proto::VarType::Type dtype, const framework::DDim& shape, const platform::Place& place, framework::Variable* var, VarBase* grad, bool stop_gradient, bool persistable) : name_(name), - dtype_(dtype), - place_(place), + type_(framework::proto::VarType::LOD_TENSOR), var_(var), grads_(grad), stop_gradient_(stop_gradient), @@ -151,10 +153,12 @@ class VarBase { pre_op_out_idx_(-1) { if (!var_) { var_ = new framework::Variable(); - auto tensor = var_->GetMutable(); - tensor->Resize(shape); - tensor->mutable_data(place_, dtype_); } + auto tensor = var_->GetMutable(); + tensor->Resize(shape); + tensor->mutable_data(place, dtype); + VLOG(10) << "create varbase: " << name_ << " type: " << dtype + << " place: " << place; } public: @@ -184,7 +188,23 @@ class VarBase { } } - inline framework::proto::VarType::Type DType() const { return dtype_; } + inline framework::DDim Dims() const { + return var_->Get().dims(); + } + + // data type. e.g.. FP32 + inline void SetDataType(framework::proto::VarType::Type type) { + auto tensor = var_->GetMutable(); + tensor->mutable_data(tensor->place(), type); + } + inline framework::proto::VarType::Type DataType() const { + auto tensor = var_->Get(); + return tensor.type(); + } + + // tensor type. e.g.. LoDTensor + inline void SetType(framework::proto::VarType::Type type) { type_ = type; } + inline framework::proto::VarType::Type Type() const { return type_; } inline void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; @@ -238,7 +258,7 @@ class VarBase { } std::string name_; - framework::proto::VarType::Type dtype_; + framework::proto::VarType::Type type_; platform::Place place_; framework::Variable* var_; @@ -334,11 +354,13 @@ class PYBIND11_HIDDEN OpBase { std::map> pre_ops_out_idx_; // Inputs to a vector of bwd ops. - std::vector grad_input_vars_; + std::vector grad_input_vars_; // Outputs to a vector of bwd ops. - std::vector grad_output_vars_; + std::vector grad_output_vars_; std::vector backward_hooks_; + + framework::AttributeMap attrs_; }; class Layer { @@ -365,12 +387,131 @@ class PyLayer { static std::vector Apply( int func_id, const std::vector& inputs); - static std::vector ApplyGrad( - int func_id, const std::vector& inputs); + static std::vector ApplyGrad(int func_id, + const std::vector& inputs); private: static std::vector CallPythonFunc( - const py::object& callable, const std::vector& ins); + const py::object& callable, const std::vector& ins); +}; + +// infer var type context for imperative mode +class PYBIND11_HIDDEN RuntimeInferVarTypeContext + : public framework::InferVarTypeContext { + public: + RuntimeInferVarTypeContext(const imperative::VarBasePtrMap* inputs, + imperative::VarBasePtrMap* outputs, + const framework::AttributeMap* attrs_map) + : InferVarTypeContext(nullptr, nullptr), + inputs_(inputs), + outputs_(outputs), + attrs_(attrs_map), + input_names_(), + output_names_(), + var_set_() { + input_names_.reserve(inputs_->size()); + for (auto& it : *inputs_) { + for (imperative::VarBase* var : it.second) { + input_names_[it.first].emplace_back(var->Name()); + var_set_[var->Name()] = var; + } + } + + output_names_.reserve(outputs_->size()); + for (auto& it : *outputs_) { + for (imperative::VarBase* var : it.second) { + output_names_[it.first].emplace_back(var->Name()); + var_set_[var->Name()] = var; + } + } + } + + virtual ~RuntimeInferVarTypeContext() {} + + framework::Attribute GetAttr(const std::string& name) const override { + PADDLE_ENFORCE_NOT_NULL(attrs_); + return attrs_->at(name); + } + + bool HasVar(const std::string& name) const override { + return var_set_.count(name) > 0; + } + + bool HasInput(const std::string& name) const override { + PADDLE_ENFORCE_NOT_NULL(inputs_); + return inputs_->count(name) > 0; + } + + bool HasOutput(const std::string& name) const override { + PADDLE_ENFORCE_NOT_NULL(outputs_); + return outputs_->count(name) > 0; + } + + const std::vector& Input( + const std::string& name) const override { + return input_names_.at(name); + } + + const std::vector& Output( + const std::string& name) const override { + return output_names_.at(name); + } + + framework::proto::VarType::Type GetType( + const std::string& name) const override { + return var_set_.at(name)->Type(); + } + + void SetType(const std::string& name, + framework::proto::VarType::Type type) override { + var_set_[name]->SetType(type); + } + + framework::proto::VarType::Type GetDataType( + const std::string& name) const override { + return var_set_.at(name)->DataType(); + } + + void SetDataType(const std::string& name, + framework::proto::VarType::Type type) override { + var_set_[name]->SetDataType(type); + } + + std::vector GetDataTypes( + const std::string& name) const override { + PADDLE_THROW("GetDataTypes is not supported in runtime InferVarType"); + } + + void SetDataTypes(const std::string& name, + const std::vector& + multiple_data_type) override { + PADDLE_THROW("SetDataTypes is not supported in runtime InferVarType"); + } + + std::vector GetShape(const std::string& name) const override { + PADDLE_THROW("Do not handle Shape in runtime InferVarType"); + } + + void SetShape(const std::string& name, + const std::vector& dims) override { + PADDLE_THROW("Do not handle Shape in runtime InferVarType"); + } + + int32_t GetLoDLevel(const std::string& name) const override { + PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType"); + } + + void SetLoDLevel(const std::string& name, int32_t lod_level) override { + PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType"); + } + + private: + const imperative::VarBasePtrMap* inputs_; + imperative::VarBasePtrMap* outputs_; + const framework::AttributeMap* attrs_; + std::unordered_map> input_names_; + std::unordered_map> output_names_; + std::unordered_map var_set_; }; } // namespace imperative diff --git a/paddle/fluid/imperative/tracer.cc b/paddle/fluid/imperative/tracer.cc index 8ce05a2b52477c6e6e05be20999e30f1fa961f08..0cfdea030eb4ef297e26fabb7fc394e5cbc19033 100644 --- a/paddle/fluid/imperative/tracer.cc +++ b/paddle/fluid/imperative/tracer.cc @@ -19,6 +19,7 @@ #include #include +#include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" @@ -135,7 +136,7 @@ framework::VariableNameMap CreateOutputVarNameMap( Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {} std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, - const VarBasePtrMap& outputs, + VarBasePtrMap* outputs, framework::AttributeMap attrs_map, const platform::Place expected_place, const bool stop_gradient) { @@ -163,7 +164,7 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, op->TrackPreOp(it.first, it.second); } - op->output_vars_ = outputs; + op->output_vars_ = *outputs; for (auto it : op->output_vars_) { auto& outvars = outvars_map[it.first]; const std::vector& outputs = it.second; @@ -186,7 +187,7 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, framework::VariableNameMap invars_name_map = CreateInputVarNameMap(op, inputs); framework::VariableNameMap outvars_name_map = - CreateOutputVarNameMap(op, outputs); + CreateOutputVarNameMap(op, *outputs); auto& info = framework::OpInfoMap::Instance().Get(op->Type()); if (info.Checker() != nullptr) { @@ -197,6 +198,11 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, framework::OpRegistry::CreateOp(op->Type(), invars_name_map, outvars_name_map, attrs_map); + if (info.infer_var_type_) { + RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, outputs, &attrs_map); + info.infer_var_type_(&infer_var_type_ctx); + } + // TODO(minqiyang): Support infer var type in imperative mode // Run forward op VLOG(3) << "tracer running " << op->Type(); @@ -221,6 +227,7 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, VLOG(5) << "start construct backward op"; // construct grad op descs + op->attrs_ = attrs_map; std::unique_ptr fwd_op_desc(new framework::OpDesc( op->Type(), invars_name_map, outvars_name_map, attrs_map)); std::unique_ptr> grad_to_var( @@ -247,12 +254,12 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, auto fwd_var_it = current_vars_map.find(grad_invar); PADDLE_ENFORCE(fwd_var_it != current_vars_map.end()); // Forward inputs or outputs. - grad_in_vars.emplace_back(fwd_var_it->second->var_); + grad_in_vars.emplace_back(fwd_var_it->second); } else { VarBase* var = current_vars_map[var_it->second]; InitGrad(var, prepared_op.GetDeviceContext()); // Douts. - grad_in_vars.emplace_back(var->grads_->var_); + grad_in_vars.emplace_back(var->grads_); } vars_saved_for_backward.insert(it.first); @@ -269,7 +276,7 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, op->Type()); VarBase* var = current_vars_map[var_it->second]; InitGrad(var, prepared_op.GetDeviceContext()); - grad_out_vars.push_back(var->grads_->var_); + grad_out_vars.push_back(var->grads_); } } } @@ -309,23 +316,23 @@ std::vector Tracer::PyTrace(OpBase* op, auto& grad_output_vars = op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)]; - for (const VarBase* inp : inputs) { - grad_input_vars.push_back(inp->var_); + for (VarBase* inp : inputs) { + grad_input_vars.push_back(inp); } for (VarBase* out : outputs) { - grad_input_vars.push_back(out->var_); + grad_input_vars.push_back(out); } // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now platform::CPUPlace place; for (VarBase* out : outputs) { InitGrad(out, platform::DeviceContextPool::Instance().Get(place)); - grad_input_vars.push_back(out->grads_->var_); + grad_input_vars.push_back(out->grads_); } for (VarBase* inp : inputs) { InitGrad(inp, platform::DeviceContextPool::Instance().Get(place)); - grad_output_vars.push_back(inp->grads_->var_); + grad_output_vars.push_back(inp->grads_); } } return outputs; diff --git a/paddle/fluid/imperative/tracer.h b/paddle/fluid/imperative/tracer.h index 7b65d55e9eff1444d84a3fba284ecbb8b47d1733..a87f3b8009dd552626c6c03fba3b0bbf3a78bb83 100644 --- a/paddle/fluid/imperative/tracer.h +++ b/paddle/fluid/imperative/tracer.h @@ -48,7 +48,7 @@ class Tracer { virtual ~Tracer() {} std::set Trace(OpBase* op, const VarBasePtrMap& inputs, - const VarBasePtrMap& outputs, + VarBasePtrMap* outputs, // NOLINT framework::AttributeMap attrs_map, const platform::Place expected_place, const bool stop_gradient = false); diff --git a/paddle/fluid/imperative/type_defs.h b/paddle/fluid/imperative/type_defs.h index fc9e42f8d0e9996176a5cbab7d8c7cf08ddce1af..c51ce931defbc87231a2f8c6c07f99d9853fb283 100644 --- a/paddle/fluid/imperative/type_defs.h +++ b/paddle/fluid/imperative/type_defs.h @@ -25,6 +25,7 @@ class VarBase; class OpBase; typedef std::map> VarBasePtrMap; +typedef std::map> ConstVarBasePtrMap; typedef std::map> OpBasePtrMap; } // namespace imperative diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt index 8f7b6f31dec72a09c414654133dfe717606b0824..d9ac73b0638ad356501a9883b49e65f8f3e32245 100644 --- a/paddle/fluid/inference/tests/api/CMakeLists.txt +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -110,7 +110,7 @@ set(TRANSFORMER_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/transformer") download_model_and_data(${TRANSFORMER_INSTALL_DIR} "temp%2Ftransformer_model.tar.gz" "temp%2Ftransformer_data.txt.tar.gz") inference_analysis_test(test_analyzer_transformer SRCS analyzer_transformer_tester.cc EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} - ARGS --infer_model=${TRANSFORMER_INSTALL_DIR}/model --infer_data=${TRANSFORMER_INSTALL_DIR}/data.txt --batch_size=8) + ARGS --infer_model=${TRANSFORMER_INSTALL_DIR}/model --infer_data=${TRANSFORMER_INSTALL_DIR}/data.txt --batch_size=8 SERIAL) # ocr set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr") diff --git a/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc b/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc index 9d17f38ab764148d4e1a63124289425c7e7aa983..f765f556112915bcfa07b5361a473d39292f711a 100644 --- a/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc @@ -183,10 +183,13 @@ void SetInput(std::vector> *inputs) { } // Easy for profiling independently. -TEST(Analyzer_Transformer, profile) { +void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; + if (use_mkldnn) { + cfg.EnableMKLDNN(); + } std::vector> input_slots_all; SetInput(&input_slots_all); @@ -194,6 +197,11 @@ TEST(Analyzer_Transformer, profile) { input_slots_all, &outputs, FLAGS_num_threads); } +TEST(Analyzer_Transformer, profile) { profile(); } +#ifdef PADDLE_WITH_MKLDNN +TEST(Analyzer_Transformer, profile_mkldnn) { profile(true); } +#endif + // Check the fuse status TEST(Analyzer_Transformer, fuse_statis) { AnalysisConfig cfg; @@ -206,9 +214,12 @@ TEST(Analyzer_Transformer, fuse_statis) { } // Compare result of NativeConfig and AnalysisConfig -TEST(Analyzer_Transformer, compare) { +void compare(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); + if (use_mkldnn) { + cfg.EnableMKLDNN(); + } std::vector> input_slots_all; SetInput(&input_slots_all); @@ -216,5 +227,10 @@ TEST(Analyzer_Transformer, compare) { reinterpret_cast(&cfg), input_slots_all); } +TEST(Analyzer_Transformer, compare) { compare(); } +#ifdef PADDLE_WITH_MKLDNN +TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */); } +#endif + } // namespace inference } // namespace paddle diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index f79960317aa1bac7ae9f8d80e4886dde8fe8ebcb..c3479b47def13e52f5775d31714aeaca21ec08c2 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -188,6 +188,9 @@ $$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ UNUSED constexpr char SqrtDoc[] = R"DOC( Sqrt Activation Operator. +Please make sure legal input, when input a negative value closed to zero, +you should add a small epsilon(1e-12) to avoid negative number caused by numerical errors. + $out = \sqrt{x}$ )DOC"; diff --git a/paddle/fluid/operators/beam_search_decode_op.cc b/paddle/fluid/operators/beam_search_decode_op.cc index cf78c83297a87beb08a8b8e6e4b182f03f1909d3..4cef49280dfb5207a9d94df42d94657f03ec838f 100644 --- a/paddle/fluid/operators/beam_search_decode_op.cc +++ b/paddle/fluid/operators/beam_search_decode_op.cc @@ -178,10 +178,10 @@ Beam Search Decode Operator. This Operator constructs the full hypotheses for each source sentence by walking back along the LoDTensorArray Input(ids) whose lods can be used to restore the path in the beam search tree. -The Output(SentenceIds) and Output(SentenceScores) separately contain the -generated id sequences and the corresponding scores. The shapes and lods of the -two LodTensor are same. The lod level is 2 and the two levels separately -indicate how many hypotheses each source sentence has and how many ids each +The Output(SentenceIds) and Output(SentenceScores) separately contain the +generated id sequences and the corresponding scores. The shapes and lods of the +two LodTensor are same. The lod level is 2 and the two levels separately +indicate how many hypotheses each source sentence has and how many ids each hypothesis has. )DOC"); } @@ -203,15 +203,12 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase { class BeamSearchDecodeInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - for (auto& o : op_desc.Output("SentenceIds")) { - auto& sentence_ids = block->FindRecursiveOrCreateVar(o); - sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR); + void operator()(framework::InferVarTypeContext* ctx) const override { + for (auto& o : ctx->Output("SentenceIds")) { + ctx->SetType(o, framework::proto::VarType::LOD_TENSOR); } - for (auto& o : op_desc.Output("SentenceScores")) { - auto& sentence_scores = block->FindRecursiveOrCreateVar(o); - sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR); + for (auto& o : ctx->Output("SentenceScores")) { + ctx->SetType(o, framework::proto::VarType::LOD_TENSOR); } } }; diff --git a/paddle/fluid/operators/beam_search_op.cc b/paddle/fluid/operators/beam_search_op.cc index fa6b09b4e7ec58624c91f1e4f428871232c0a083..a6aa35e0569364d79c15aea6e6dbc6ca670d49f0 100644 --- a/paddle/fluid/operators/beam_search_op.cc +++ b/paddle/fluid/operators/beam_search_op.cc @@ -65,7 +65,7 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(true); AddComment(R"DOC( -This operator does the search in beams for one time step. +This operator does the search in beams for one time step. Specifically, it selects the top-K candidate word ids of current step from Input(ids) according to their Input(scores) for all source sentences, where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results @@ -120,15 +120,12 @@ class BeamSearchOp : public framework::OperatorWithKernel { class BeamSearchInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &o : op_desc.Output("selected_ids")) { - auto &selected_ids = block->FindRecursiveOrCreateVar(o); - selected_ids.SetType(framework::proto::VarType::LOD_TENSOR); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &o : ctx->Output("selected_ids")) { + ctx->SetType(o, framework::proto::VarType::LOD_TENSOR); } - for (auto &o : op_desc.Output("selected_scores")) { - auto &selected_scores = block->FindRecursiveOrCreateVar(o); - selected_scores.SetType(framework::proto::VarType::LOD_TENSOR); + for (auto &o : ctx->Output("selected_scores")) { + ctx->SetType(o, framework::proto::VarType::LOD_TENSOR); } } }; diff --git a/paddle/fluid/operators/concat_op.cc b/paddle/fluid/operators/concat_op.cc index 194f9cf5033a3a73afeb8e92ddbdcc7b316fcd35..5d5ad9e711a97fb2ab83df40c7605902d5aa7751 100644 --- a/paddle/fluid/operators/concat_op.cc +++ b/paddle/fluid/operators/concat_op.cc @@ -50,9 +50,19 @@ class ConcatOp : public framework::OperatorWithKernel { if (j == axis) { out_dims[axis] += ins[i][j]; } else { - PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], - "Input tensors should have the same " - "elements except the specify axis."); + if (ctx->IsRuntime()) { + // check all shape in run time + PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], + "Input tensors should have the same " + "elements except the specify axis."); + } else { + // not check -1 with other in compile time + if (out_dims[j] != -1 && ins[i][j] != -1) { + PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], + "Input tensors should have the same " + "elements except the specify axis."); + } + } } } } diff --git a/paddle/fluid/operators/controlflow/get_places_op.cc b/paddle/fluid/operators/controlflow/get_places_op.cc index 1a157688f3d02185d18b66ff5ba3613b6cf438ad..fa77f97419b6d605e478709e13413606ff124572 100644 --- a/paddle/fluid/operators/controlflow/get_places_op.cc +++ b/paddle/fluid/operators/controlflow/get_places_op.cc @@ -93,11 +93,9 @@ execution. class GetPlacesInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &o_name : op_desc.Output("Out")) { - block->FindRecursiveOrCreateVar(o_name).SetType( - framework::proto::VarType::PLACE_LIST); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &o_name : ctx->Output("Out")) { + ctx->SetType(o_name, framework::proto::VarType::PLACE_LIST); } } }; diff --git a/paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc b/paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc index fa18ade3234ed1802bb44ad622f9041dc73d84ee..45f18ac9255bdd75d8cbb5e1dd30ebba52260850 100644 --- a/paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc +++ b/paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc @@ -100,16 +100,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase { class WriteToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto x_name = op_desc.Input("X")[0]; - auto out_name = op_desc.Output("Out")[0]; + void operator()(framework::InferVarTypeContext *ctx) const override { + auto x_name = ctx->Input("X")[0]; + auto out_name = ctx->Output("Out")[0]; VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY"; - auto &out = block->FindRecursiveOrCreateVar(out_name); - out.SetType(framework::proto::VarType::LOD_TENSOR_ARRAY); - auto *x = block->FindVarRecursive(x_name); - if (x != nullptr) { - out.SetDataType(x->GetDataType()); + ctx->SetType(out_name, framework::proto::VarType::LOD_TENSOR_ARRAY); + if (ctx->HasVar(x_name)) { + ctx->SetDataType(out_name, ctx->GetDataType(x_name)); } } }; diff --git a/paddle/fluid/operators/controlflow/while_op.cc b/paddle/fluid/operators/controlflow/while_op.cc index 8352ba4f2b846af58d2d041ebf5201ee15f8481c..deb8ec3bb2d5682e8733365fb865daebbf8405e0 100644 --- a/paddle/fluid/operators/controlflow/while_op.cc +++ b/paddle/fluid/operators/controlflow/while_op.cc @@ -365,19 +365,16 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { class WhileGradOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto p_names = op_desc.Input(kX); - auto pg_ig_names = op_desc.Output(framework::GradVarName(kX)); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto p_names = ctx->Input(kX); + auto pg_ig_names = ctx->Output(framework::GradVarName(kX)); for (size_t i = 0; i < p_names.size(); ++i) { - auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i])); - auto *g_var = block->FindVarRecursive(pg_ig_names[i]); - if (g_var != nullptr) { // Gradient could be @EMPTY@ + if (ctx->HasVar(pg_ig_names[i])) { VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i] - << " type: " << p_var.GetType(); - g_var->SetType(p_var.GetType()); - g_var->SetDataType(p_var.GetDataType()); + << " type: " << ctx->GetType(p_names[i]); + ctx->SetType(pg_ig_names[i], ctx->GetType(p_names[i])); + ctx->SetDataType(pg_ig_names[i], ctx->GetDataType(p_names[i])); } } } diff --git a/paddle/fluid/operators/conv_transpose_op.cc b/paddle/fluid/operators/conv_transpose_op.cc index c994c6f642d286d9b52ada667058b064ff242ce6..baa39c0f9926efc233f9a228e055e2eb2116dbcc 100644 --- a/paddle/fluid/operators/conv_transpose_op.cc +++ b/paddle/fluid/operators/conv_transpose_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/conv_transpose_op.h" +#include #include #include @@ -344,6 +345,28 @@ framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType( ctx.GetPlace(), layout_, library_); } +class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + std::unique_ptr op(new framework::OpDesc()); + op->SetType(ForwardOp().Type() + "_grad"); + op->SetInput("Input", Input("Input")); + op->SetInput("Filter", Input("Filter")); + op->SetOutput(framework::GradVarName("Input"), InputGrad("Input")); + op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter")); + if (ForwardOp().Inputs().count("Bias") > 0) { + op->SetInput("Bias", Input("Bias")); + op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias")); + } + op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); + op->SetAttrMap(Attrs()); + return op; + } +}; + } // namespace operators } // namespace paddle @@ -352,7 +375,7 @@ namespace ops = paddle::operators; // conv2d_transpose REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker, - paddle::framework::DefaultGradOpDescMaker); + ops::ConvTransposeGradOpDescMaker); REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( @@ -368,7 +391,7 @@ REGISTER_OP_CPU_KERNEL( // conv3d_transpose REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker, - paddle::framework::DefaultGradOpDescMaker); + ops::ConvTransposeGradOpDescMaker); REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( @@ -384,7 +407,7 @@ REGISTER_OP_CPU_KERNEL( // depthwise conv2d_transpose REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker, - paddle::framework::DefaultGradOpDescMaker); + ops::ConvTransposeGradOpDescMaker); REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/fluid/operators/cos_sim_op.cc b/paddle/fluid/operators/cos_sim_op.cc index 8f3644039f9950a8a70e2fd66c20837a5f52bd7f..30ec74d8442d2f42510220b825988b340f79d0a2 100644 --- a/paddle/fluid/operators/cos_sim_op.cc +++ b/paddle/fluid/operators/cos_sim_op.cc @@ -74,6 +74,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { "Norm of the second input, reduced along the 1st " "dimension.") .AsIntermediate(); + AddAttr(framework::kAllKernelsMustComputeRuntimeShape, + "Skip calling InferShape() function in the runtime.") + .SetDefault(true); AddComment(R"DOC( **Cosine Similarity Operator** diff --git a/paddle/fluid/operators/cos_sim_op.h b/paddle/fluid/operators/cos_sim_op.h index 76cfc680518a3caaa68abc48cedf82ce7d21c8b8..0b4e3f774674112ddc268ba911e1df317d5edcca 100644 --- a/paddle/fluid/operators/cos_sim_op.h +++ b/paddle/fluid/operators/cos_sim_op.h @@ -28,17 +28,21 @@ class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // get Tensor - auto* in_x = context.Input("X"); + auto* in_x = context.Input("X"); auto* in_y = context.Input("Y"); - auto* out_z = context.Output("Out"); + auto* out_z = context.Output("Out"); auto* out_x_norm = context.Output("XNorm"); auto* out_y_norm = context.Output("YNorm"); - out_z->mutable_data(context.GetPlace()); - out_x_norm->mutable_data(context.GetPlace()); - out_y_norm->mutable_data(context.GetPlace()); int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; + out_z->Resize({rows_x, 1}); + out_x_norm->Resize({rows_x, 1}); + out_y_norm->Resize({rows_y, 1}); + out_z->mutable_data(context.GetPlace()); + out_x_norm->mutable_data(context.GetPlace()); + out_y_norm->mutable_data(context.GetPlace()); + out_z->set_lod(in_x->lod()); int cols = framework::product(in_x->dims()) / rows_x; @@ -81,6 +85,7 @@ class CosSimGradKernel : public framework::OpKernel { if (rows_x == rows_y) { if (out_grad_x) { + out_grad_x->Resize(in_x->dims()); math::CosSimGradFunctor functor( in_x_norm->data(), in_y_norm->data(), in_x->data(), in_y->data(), in_z->data(), in_grad_z->data(), @@ -91,6 +96,7 @@ class CosSimGradKernel : public framework::OpKernel { for_range(functor); } if (out_grad_y) { + out_grad_y->Resize(in_y->dims()); math::CosSimGradFunctor functor( in_y_norm->data(), in_x_norm->data(), in_y->data(), in_x->data(), in_z->data(), in_grad_z->data(), @@ -102,6 +108,7 @@ class CosSimGradKernel : public framework::OpKernel { } } else { if (out_grad_x) { + out_grad_x->Resize(in_x->dims()); math::CosSimDxFunctor functor( in_x_norm->data(), in_y_norm->data(), in_x->data(), in_y->data(), in_z->data(), in_grad_z->data(), @@ -112,6 +119,7 @@ class CosSimGradKernel : public framework::OpKernel { for_range(functor); } if (out_grad_y) { + out_grad_y->Resize(in_y->dims()); out_grad_y->mutable_data(context.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); diff --git a/paddle/fluid/operators/distributed_ops/allreduce_op.cc b/paddle/fluid/operators/distributed_ops/allreduce_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0fbc27515cec9f7982852954055aa929f678a096 --- /dev/null +++ b/paddle/fluid/operators/distributed_ops/allreduce_op.cc @@ -0,0 +1,143 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include // NOLINT +#include + +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_registry.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/nccl_helper.h" +#endif + +namespace paddle { +namespace operators { + +struct MutableDataFunctor { + MutableDataFunctor(void** data, framework::LoDTensor* tensor, + const platform::Place& place) + : data_(data), tensor_(tensor), place_(place) {} + + template + void apply() { + *data_ = tensor_->mutable_data(place_); + } + + void** data_; + framework::LoDTensor* tensor_; + platform::Place place_; +}; + +class AllReduceOp : public framework::OperatorBase { + using OperatorBase::OperatorBase; + + void RunImpl(const framework::Scope& scope, + const platform::Place& place) const override { + PADDLE_ENFORCE(is_gpu_place(place), + "AllReduce op can run on gpu place only for now."); +#ifdef PADDLE_WITH_CUDA + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto* ctx = pool.Get(place); + auto in_names = Inputs("X"); + auto out_names = Outputs("Out"); + PADDLE_ENFORCE_EQ(in_names.size(), 1, "Only support one input"); + PADDLE_ENFORCE_EQ(out_names.size(), 1, "Only support one output"); + + auto* in = scope.FindVar(in_names[0]); + auto* out = scope.FindVar(out_names[0]); + + PADDLE_ENFORCE(in->IsType() || + out->IsType(), + "Only support allreduce LoDTensors"); + + int dtype = -1; + auto in_tensor = in->Get(); + dtype = platform::ToNCCLDataType(in_tensor.type()); + + int64_t numel = in_tensor.numel(); + auto* sendbuff = in_tensor.data(); + auto* out_tensor = out->GetMutable(); + out_tensor->Resize(in_tensor.dims()); + void* recvbuff = nullptr; + framework::VisitDataType(in_tensor.type(), + MutableDataFunctor(&recvbuff, out_tensor, place)); + + auto cuda_ctx = static_cast(ctx); + auto* comm = cuda_ctx->nccl_comm(); + // FIXME(typhoonzero): should use nccl stream here. + auto stream = cuda_ctx->stream(); + + int reduce_type = Attr("reduce_type"); + ncclRedOp_t red_type = ncclSum; + switch (reduce_type) { + case 0: + red_type = ncclSum; + break; + case 1: + red_type = ncclProd; + break; + case 2: + red_type = ncclMax; + break; + case 3: + red_type = ncclMin; + break; + } + + PADDLE_ENFORCE(platform::dynload::ncclAllReduce( + sendbuff, recvbuff, numel, static_cast(dtype), red_type, + comm, stream)); +#endif + } +}; + +class AllReduceOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() { + AddInput("X", "(Tensor), tensor to be allreduced."); + AddOutput("Out", "(Tensor) the result of allreduced."); + AddAttr("reduce_type", "(int) determin the reduce type.") + .SetDefault(0); + AddComment(R"DOC( +***AllReduce Operator*** + +Call NCCL AllReduce internally. Note that this op must be used when one +thread is managing one GPU device. + +For speed reasons, reduce_type should be an integer: + +0: sum +1: prod +2: max +3: min + +If input and output are the same variable, in-place allreduce will be used. +)DOC"); + } +}; + +class AllReduceOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* ctx) const override {} +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(allreduce, ops::AllReduceOp, + paddle::framework::EmptyGradOpMaker, ops::AllReduceOpMaker, + ops::AllReduceOpShapeInference); diff --git a/paddle/fluid/operators/distributed_ops/fake_init_op.cc b/paddle/fluid/operators/distributed_ops/fake_init_op.cc index 28ebdcb03ea83f3ec701106111a7cc5f0f7ed7dc..5ee35e0458a64dacc1c469a435edd28de1b78e6b 100644 --- a/paddle/fluid/operators/distributed_ops/fake_init_op.cc +++ b/paddle/fluid/operators/distributed_ops/fake_init_op.cc @@ -56,8 +56,7 @@ class FakeInitOp : public framework::OperatorBase { class FakeInitOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override {} + void operator()(framework::InferVarTypeContext *ctx) const override {} }; class FakeInitOpMaker : public framework::OpProtoAndCheckerMaker { diff --git a/paddle/fluid/operators/distributed_ops/merge_ids_op.cc b/paddle/fluid/operators/distributed_ops/merge_ids_op.cc index da0185b8c492eeb694902b46c871c44cd060d438..1b0b4dd31693340bc39c0da8995a2a2d40b13e00 100644 --- a/paddle/fluid/operators/distributed_ops/merge_ids_op.cc +++ b/paddle/fluid/operators/distributed_ops/merge_ids_op.cc @@ -114,11 +114,10 @@ class MergeIdsOp : public framework::OperatorWithKernel { class MergeIdsOpInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto *input_var = block->Var(op_desc.Input("Ids")[0]); - for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(input_var->GetType()); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto input_type = ctx->GetType(ctx->Input("Ids")[0]); + for (auto &out_var : ctx->Output("Out")) { + ctx->SetType(out_var, input_type); } } }; diff --git a/paddle/fluid/operators/distributed_ops/split_ids_op.cc b/paddle/fluid/operators/distributed_ops/split_ids_op.cc index f61d387fbef636298c412c227bf7a56a04f69c63..191ca1efe8ca5798ddbd38968eafde349af8a7d1 100644 --- a/paddle/fluid/operators/distributed_ops/split_ids_op.cc +++ b/paddle/fluid/operators/distributed_ops/split_ids_op.cc @@ -14,6 +14,8 @@ limitations under the License. */ #include "paddle/fluid/operators/distributed_ops/split_ids_op.h" +#include + namespace paddle { namespace operators { @@ -71,11 +73,10 @@ class SplitIdsOp : public framework::OperatorWithKernel { class SplitIdsOpInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto *input_var = block->Var(op_desc.Input("Ids")[0]); - for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(input_var->GetType()); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto input_type = ctx->GetType(ctx->Input("Ids")[0]); + for (auto &out_var : ctx->Output("Out")) { + ctx->SetType(out_var, input_type); } } }; diff --git a/paddle/fluid/operators/dropout_op.cc b/paddle/fluid/operators/dropout_op.cc index 2ccc86c1dc04a3afeb02b24677e6ebce40cca4fa..7c64eadffffbafe0d7f92ec345d75a92c4fef58e 100644 --- a/paddle/fluid/operators/dropout_op.cc +++ b/paddle/fluid/operators/dropout_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/dropout_op.h" +#include #include namespace paddle { @@ -106,21 +107,31 @@ class DropoutOpGrad : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(ctx->Attrs().Get("is_test"), false, "GradOp is only callable when is_test is false"); - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) must not be null."); - auto x_dims = ctx->GetInputDim("X"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); - PADDLE_ENFORCE_EQ(x_dims, out_dims, - "Dimensions of Input(X) and Out@Grad must be the same."); - auto mask_dims = ctx->GetInputDim("Mask"); - PADDLE_ENFORCE_EQ(x_dims, mask_dims, - "Dimensions of Input(X) and Mask must be the same."); - - ctx->SetOutputDim(framework::GradVarName("X"), x_dims); - ctx->ShareLoD("X", /*->*/ framework::GradVarName("X")); + + ctx->SetOutputDim(framework::GradVarName("X"), out_dims); + ctx->ShareLoD(framework::GradVarName("Out"), + /*->*/ framework::GradVarName("X")); + } +}; + +class DropoutGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + std::unique_ptr op(new framework::OpDesc()); + op->SetType("dropout_grad"); + op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + op->SetInput("Mask", Output("Mask")); + op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op->SetAttrMap(Attrs()); + return op; } }; @@ -129,7 +140,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker, - paddle::framework::DefaultGradOpDescMaker); + ops::DropoutGradOpDescMaker); REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad); REGISTER_OP_CPU_KERNEL( dropout, ops::CPUDropoutKernel, diff --git a/paddle/fluid/operators/fill_constant_op.cc b/paddle/fluid/operators/fill_constant_op.cc index c86430524e182acd66c61e3e01672a32f15a62c3..cf2f4776cf2ae9a707d3b841c2a41b7f82ca7833 100644 --- a/paddle/fluid/operators/fill_constant_op.cc +++ b/paddle/fluid/operators/fill_constant_op.cc @@ -39,12 +39,11 @@ class FillConstantOp : public framework::OperatorWithKernel { class FillConstantOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { + void operator()(framework::InferVarTypeContext* ctx) const override { auto data_type = static_cast( - boost::get(op_desc.GetAttr("dtype"))); - auto& out_var_name = op_desc.Output("Out").front(); - block->Var(out_var_name)->SetDataType(data_type); + boost::get(ctx->GetAttr("dtype"))); + auto& out_var_name = ctx->Output("Out").front(); + ctx->SetDataType(out_var_name, data_type); } }; diff --git a/paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc b/paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc index ecb89184990b6f6295a104b2adc96875b5d15fd6..9cc94ab88d59dbf8215aca6cd8be3ba19afe32d0 100644 --- a/paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc +++ b/paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc @@ -138,22 +138,20 @@ class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel { class FusedEmbeddingSeqPoolOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - auto out_var_name = op_desc.Output(framework::GradVarName("W")).front(); - auto attr = op_desc.GetAttr("is_sparse"); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto out_var_name = ctx->Output(framework::GradVarName("W")).front(); + auto attr = ctx->GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(3) << "fused_embedding_seq_pool_grad op " << framework::GradVarName("W") << " is set to SelectedRows"; - block->Var(out_var_name) - ->SetType(framework::proto::VarType::SELECTED_ROWS); + ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS); } else { VLOG(3) << "fused_embedding_seq_pool_grad op " << framework::GradVarName("W") << " is set to LoDTensor"; - block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR); + ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR); } - block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType()); + ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0])); } }; diff --git a/paddle/fluid/operators/get_tensor_from_selected_rows_op.cc b/paddle/fluid/operators/get_tensor_from_selected_rows_op.cc index a4ae19d9c1e3bb2af3eb95650fbb5aabb8944a36..c0893359af2f4de4ed8fd88ebff122447e8d84c7 100644 --- a/paddle/fluid/operators/get_tensor_from_selected_rows_op.cc +++ b/paddle/fluid/operators/get_tensor_from_selected_rows_op.cc @@ -81,15 +81,12 @@ GetTensorFromSelectedRows is used to get the tensor from SelectedRows. class GetTensorFromSelectedRowsOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const final { - auto out_var_name = op_desc.Output("Out").front(); - auto in_var_name = op_desc.Input("X").front(); - - auto out_var = block->FindRecursiveOrCreateVar(out_var_name); - auto in_var = block->FindRecursiveOrCreateVar(in_var_name); - out_var.SetType(framework::proto::VarType::LOD_TENSOR); - out_var.SetDataType(in_var.GetDataType()); + void operator()(framework::InferVarTypeContext *ctx) const { // NOLINT + auto out_var_name = ctx->Output("Out").front(); + auto in_var_name = ctx->Input("X").front(); + + ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR); + ctx->SetDataType(out_var_name, ctx->GetDataType(in_var_name)); } }; diff --git a/paddle/fluid/operators/hierarchical_sigmoid_op.cc b/paddle/fluid/operators/hierarchical_sigmoid_op.cc index 6ca6f0bc04aa696852ed7338dcb4b88a49b2fc81..d0e1057c4357e372d3ab396841de7b2d0577d365 100644 --- a/paddle/fluid/operators/hierarchical_sigmoid_op.cc +++ b/paddle/fluid/operators/hierarchical_sigmoid_op.cc @@ -197,38 +197,32 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel { class HierarchicalSigmoidGradOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front(); - auto bias_grad_var_name_vec = - op_desc.Output(framework::GradVarName("Bias")); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto w_grad_var_name = ctx->Output(framework::GradVarName("W")).front(); + auto bias_grad_var_name_vec = ctx->Output(framework::GradVarName("Bias")); std::string bias_grad_var_name; bool hasBias = false; if (bias_grad_var_name_vec.size()) { hasBias = true; - bias_grad_var_name = - op_desc.Output(framework::GradVarName("Bias")).front(); + bias_grad_var_name = ctx->Output(framework::GradVarName("Bias")).front(); } - auto attr = op_desc.GetAttr("is_sparse"); + auto attr = ctx->GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W") << " is set to SelectedRows"; - block->Var(w_grad_var_name) - ->SetType(framework::proto::VarType::SELECTED_ROWS); + ctx->SetType(w_grad_var_name, framework::proto::VarType::SELECTED_ROWS); } else { VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W") << " is set to LoDTensor"; - block->Var(w_grad_var_name) - ->SetType(framework::proto::VarType::LOD_TENSOR); + ctx->SetType(w_grad_var_name, framework::proto::VarType::LOD_TENSOR); } if (hasBias) { VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("Bias") << " is set to LoDTensor"; - block->Var(bias_grad_var_name) - ->SetType(framework::proto::VarType::LOD_TENSOR); + ctx->SetType(bias_grad_var_name, framework::proto::VarType::LOD_TENSOR); } - block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType()); + ctx->SetDataType(w_grad_var_name, ctx->GetDataType(ctx->Input("W")[0])); } }; diff --git a/paddle/fluid/operators/layer_norm_op.cc b/paddle/fluid/operators/layer_norm_op.cc index b9db6daf0825b573bfc7f684266212f998c91627..9b1a854a312551732424e0d127a43328b8db6085 100644 --- a/paddle/fluid/operators/layer_norm_op.cc +++ b/paddle/fluid/operators/layer_norm_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/layer_norm_op.h" +#include namespace paddle { namespace operators { @@ -133,7 +134,7 @@ class LayerNormGradOp : public framework::OperatorWithKernel { } if (ctx->HasOutput(framework::GradVarName("Bias"))) { ctx->SetOutputDim(framework::GradVarName("Bias"), - ctx->GetInputDim("Bias")); + ctx->GetInputDim("Scale")); } } @@ -157,12 +158,39 @@ class LayerNormGradOp : public framework::OperatorWithKernel { } }; +class LayerNormGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + std::unique_ptr op(new framework::OpDesc()); + op->SetType("layer_norm_grad"); + op->SetInput("X", Input("X")); + op->SetInput("Mean", Output("Mean")); + op->SetInput("Variance", Output("Variance")); + if (ForwardOp().Inputs().count("Scale") > 0) { + op->SetInput("Scale", Input("Scale")); + op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale")); + } + + if (ForwardOp().Inputs().count("Bias") > 0) { + op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias")); + } + + op->SetInput(framework::GradVarName("Y"), OutputGrad("Y")); + op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op->SetAttrMap(Attrs()); + return op; + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker, - paddle::framework::DefaultGradOpDescMaker); + ops::LayerNormGradOpDescMaker); REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp); REGISTER_OP_CPU_KERNEL( layer_norm, ops::LayerNormKernel, diff --git a/paddle/fluid/operators/layer_norm_op.h b/paddle/fluid/operators/layer_norm_op.h index 8627c83b43cc0ff0f56417c0f7f67effa494cd37..db794ed42116144f310b9d7dc529cff49ba2c405 100644 --- a/paddle/fluid/operators/layer_norm_op.h +++ b/paddle/fluid/operators/layer_norm_op.h @@ -245,11 +245,9 @@ class LayerNormGradKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { const float epsilon = ctx.Attr("epsilon"); auto x = *ctx.Input("X"); - auto* y = ctx.Input("Y"); auto* mean = ctx.Input("Mean"); auto* var = ctx.Input("Variance"); auto* scale = ctx.Input("Scale"); - auto* bias = ctx.Input("Bias"); auto d_y = *ctx.Input(framework::GradVarName("Y")); const auto begin_norm_axis = ctx.Attr("begin_norm_axis"); @@ -275,18 +273,13 @@ class LayerNormGradKernel : public framework::OpKernel { x.Resize(matrix_shape); temp.mutable_data(matrix_shape, ctx.GetPlace()); - if (!(bias && scale)) { - temp_norm.ShareDataWith(*y); - temp_norm.Resize(matrix_shape); - } else { - temp_norm.mutable_data(matrix_shape, ctx.GetPlace()); - // get x_norm - ElementwiseComputeEx, DeviceContext, T>( - ctx, &x, mean, /*axis*/ 0, SubFunctor(), &temp_norm); - ElementwiseComputeEx, DeviceContext, T>( - ctx, &temp_norm, var, /*axis*/ 0, - DivAndSqrtFunctor(static_cast(epsilon)), &temp_norm); - } + temp_norm.mutable_data(matrix_shape, ctx.GetPlace()); + // get x_norm + ElementwiseComputeEx, DeviceContext, T>( + ctx, &x, mean, /*axis*/ 0, SubFunctor(), &temp_norm); + ElementwiseComputeEx, DeviceContext, T>( + ctx, &temp_norm, var, /*axis*/ 0, + DivAndSqrtFunctor(static_cast(epsilon)), &temp_norm); } if (d_bias) { diff --git a/paddle/fluid/operators/lod_rank_table_op.cc b/paddle/fluid/operators/lod_rank_table_op.cc index 166952fe23192799443ef9c9d1f7ba5056d19290..0a43ac0c52f9bc98eacf743480166682482cc3c0 100644 --- a/paddle/fluid/operators/lod_rank_table_op.cc +++ b/paddle/fluid/operators/lod_rank_table_op.cc @@ -64,11 +64,9 @@ class LoDRankTableInferShape : public framework::InferShapeBase { class LoDRankTableInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &o : op_desc.Output("Out")) { - block->FindRecursiveOrCreateVar(o).SetType( - framework::proto::VarType::LOD_RANK_TABLE); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &o : ctx->Output("Out")) { + ctx->SetType(o, framework::proto::VarType::LOD_RANK_TABLE); } } }; diff --git a/paddle/fluid/operators/lod_tensor_to_array_op.cc b/paddle/fluid/operators/lod_tensor_to_array_op.cc index 9b91cf526016307653d42990e56104ea082fb8b4..61e342737045616112d51b7753939286a31dc6cd 100644 --- a/paddle/fluid/operators/lod_tensor_to_array_op.cc +++ b/paddle/fluid/operators/lod_tensor_to_array_op.cc @@ -201,10 +201,9 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase { class LoDTensorToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &out_var : ctx->Output("Out")) { + ctx->SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY); } } }; diff --git a/paddle/fluid/operators/lookup_table_op.cc b/paddle/fluid/operators/lookup_table_op.cc index 0029932bc068c7f61ddb41cf3f87c9e1a5cd7749..8d1ebe6b1ce3374d21f0cdfff21ca27929398e8e 100644 --- a/paddle/fluid/operators/lookup_table_op.cc +++ b/paddle/fluid/operators/lookup_table_op.cc @@ -147,22 +147,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { class LookupTableOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - auto out_var_name = op_desc.Output(framework::GradVarName("W")).front(); - auto attr = op_desc.GetAttr("is_sparse"); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto out_var_name = ctx->Output(framework::GradVarName("W")).front(); + auto attr = ctx->GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to SelectedRows"; - block->Var(out_var_name) - ->SetType(framework::proto::VarType::SELECTED_ROWS); + ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS); } else { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to LoDTensor"; - block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR); + ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR); } - block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType()); + ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0])); } }; diff --git a/paddle/fluid/operators/nccl/nccl_op.cc b/paddle/fluid/operators/nccl/nccl_op.cc index 0018139cb06fe0573565c920849843e674df6f4c..6a0ae0dede695d80508bcc92a7a13ae9f73c3c57 100644 --- a/paddle/fluid/operators/nccl/nccl_op.cc +++ b/paddle/fluid/operators/nccl/nccl_op.cc @@ -60,12 +60,9 @@ class NCCLInitOp : public framework::OperatorBase { class NCCLInitOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto out_var_name = op_desc.Output("Communicator").front(); - auto &out_var = block->FindRecursiveOrCreateVar(out_var_name); - auto var_type = framework::proto::VarType::RAW; - out_var.SetType(var_type); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto out_var_name = ctx->Output("Communicator").front(); + ctx->SetType(out_var_name, framework::proto::VarType::RAW); } }; diff --git a/paddle/fluid/operators/nce_op.cc b/paddle/fluid/operators/nce_op.cc index 256da34912560ddf1f7e430e8543efe00e5885bc..fa7cc58c08455457dd129afd130067704ec72c7c 100644 --- a/paddle/fluid/operators/nce_op.cc +++ b/paddle/fluid/operators/nce_op.cc @@ -237,23 +237,21 @@ class NCEOpGrad : public framework::OperatorWithKernel { class NCEOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front(); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto weight_grad = ctx->Output(framework::GradVarName("Weight")).front(); - auto attr = op_desc.GetAttr("is_sparse"); + auto attr = ctx->GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(3) << "nce_op_grad op " << weight_grad << " and " << " is set to SelectedRows"; - block->Var(weight_grad) - ->SetType(framework::proto::VarType::SELECTED_ROWS); + ctx->SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS); } else { VLOG(3) << "nce_op_grad op " << weight_grad << " and " << " is set to LoDTensor"; - block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR); + ctx->SetType(weight_grad, framework::proto::VarType::LOD_TENSOR); } - block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType()); + ctx->SetDataType(weight_grad, ctx->GetDataType(ctx->Input("Input")[0])); } }; diff --git a/paddle/fluid/operators/ngraph/ngraph_engine.cc b/paddle/fluid/operators/ngraph/ngraph_engine.cc index cd32200e925193b393f4531b87ed6b1e4291109d..014c9ecca4aa7875e5188b33595f5e8f79c1a9db 100644 --- a/paddle/fluid/operators/ngraph/ngraph_engine.cc +++ b/paddle/fluid/operators/ngraph/ngraph_engine.cc @@ -92,12 +92,10 @@ static std::vector> NgraphOpIntervals( int size = ops->size(); int left = 0; - while (left < size && ops->at(left)->Type() != framework::kFeedOpType) { + while (left < size && ops->at(left)->Type() != framework::kFeedOpType && + ops->at(left)->Type() != framework::kFetchOpType) { ++left; } - if (left == size) { - return intervals; - } while (left < size && ops->at(left)->Type() == framework::kFeedOpType) { for (auto& var_name_item : ops->at(left)->Outputs()) { @@ -112,10 +110,6 @@ static std::vector> NgraphOpIntervals( while (right < size && ops->at(right)->Type() != framework::kFetchOpType) { ++right; } - if (right == size) { - return intervals; - } - if (left >= right) return intervals; int index = right; while (index < size && ops->at(index)->Type() == framework::kFetchOpType) { @@ -127,6 +121,10 @@ static std::vector> NgraphOpIntervals( ++index; } + if (left == size || ops->at(left)->Type() == framework::kFetchOpType) { + left = 0; + } + // (left, right - 1) represents indices between feed and fetch int pivot = left; while (pivot < right) { @@ -234,6 +232,7 @@ NgraphEngine::NgraphEngine(const framework::Scope& scope, } void NgraphEngine::Prepare(const std::vector& interval) { + bool has_fetch = false, is_full = false; for (auto& var : p_bdesc->AllVars()) { if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS || var->GetType() == framework::proto::VarType::LOD_TENSOR || @@ -264,6 +263,9 @@ void NgraphEngine::Prepare(const std::vector& interval) { std::vector ops_desc; for (auto op_desc : p_bdesc->AllOps()) { ops_desc.emplace_back(op_desc); + if (op_desc->Type() == framework::kFetchOpType) { + has_fetch = true; + } } for (auto op_desc : ops_desc) { @@ -276,11 +278,11 @@ void NgraphEngine::Prepare(const std::vector& interval) { if (interval[0] > 0 && ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType && interval[1] < static_cast(ops_desc.size()) && - ops_desc.at(interval.at(1))->Type() == framework::kFetchOpType) { - this->op_state_ = OpState::FULL; + ops_desc.at(interval[1])->Type() == framework::kFetchOpType) { + is_full = true; } - if (this->op_state_ == OpState::FULL) { + if (is_full) { this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN; } else { this->op_state_ = @@ -293,7 +295,8 @@ void NgraphEngine::Prepare(const std::vector& interval) { framework::OpRegistry::CreateOp(*(ops_desc[idx]))); ++idx; } - while (ops_desc.at(idx)->Type() != framework::kFetchOpType) { + while (idx < static_cast(ops_desc.size()) && + ops_desc.at(idx)->Type() != framework::kFetchOpType) { auto op_desc = ops_desc.at(idx); for (auto& var_name_item : op_desc->Inputs()) { for (auto& var_name : var_name_item.second) { @@ -303,6 +306,10 @@ void NgraphEngine::Prepare(const std::vector& interval) { ++idx; } + if (!has_fetch) { + op_state_ = OpState::UNKNOWN; + } + BuildNgIO(ops_desc, interval); } @@ -378,6 +385,7 @@ void NgraphEngine::BuildNgIO(const std::vector& ops_desc, } } } + for (size_t i = 0; i < var_in_.size(); ++i) { auto var_name = var_in_[i]; if (persistables_.find(var_name) == persistables_.end()) { diff --git a/paddle/fluid/operators/ngraph/ngraph_engine.h b/paddle/fluid/operators/ngraph/ngraph_engine.h index fef51464b5702e61d052f28050f6aefaecf0f615..b6532519e947bc59f0605c4f2008270f5e51b0e0 100644 --- a/paddle/fluid/operators/ngraph/ngraph_engine.h +++ b/paddle/fluid/operators/ngraph/ngraph_engine.h @@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ -#define PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ +#pragma once + #include #include #include @@ -35,7 +35,6 @@ enum class OpState { /* nGraph support state on ops */ PARTIAL_TRAIN, /* Support partial ops for train */ FULL_TEST, /* Support full list of ops for test */ PARTIAL_TEST, /* Support partial list of ops for test */ - FULL, /* All ops supported from feed to fetch */ UNKNOWN /* Output all for debug purpose */ }; @@ -119,4 +118,3 @@ class NgraphEngine { } // namespace operators } // namespace paddle -#endif // PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ diff --git a/paddle/fluid/operators/ngraph/ngraph_engine_op.cc b/paddle/fluid/operators/ngraph/ngraph_engine_op.cc index f941f917c82b3b74a35739c08112233fd0a3477c..479c95ba08c316be3d1d983ea736fcc505332d6e 100644 --- a/paddle/fluid/operators/ngraph/ngraph_engine_op.cc +++ b/paddle/fluid/operators/ngraph/ngraph_engine_op.cc @@ -37,8 +37,7 @@ class NgraphEngineOpMaker : public framework::OpProtoAndCheckerMaker { class NgraphEngineInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override {} + void operator()(framework::InferVarTypeContext *ctx) const override {} }; } // namespace operators diff --git a/paddle/fluid/operators/optimizers/lars_momentum_op.cc b/paddle/fluid/operators/optimizers/lars_momentum_op.cc index 574a03680b66962ac2d6ba249d0fc491a36794cd..126b665dd4d9301ae67346afa45a250accfec656 100644 --- a/paddle/fluid/operators/optimizers/lars_momentum_op.cc +++ b/paddle/fluid/operators/optimizers/lars_momentum_op.cc @@ -56,9 +56,9 @@ This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each weight using a local learning rate: $$ -local\_lr = \eta * +local\_lr = \eta * \frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\ -velocity = mu * velocity + +velocity = mu * velocity + local\_lr * (grad + \beta * param) \\ param = param - velocity. \\ $$ @@ -72,8 +72,7 @@ use L2 regularizers in case of using LARS. class LarsMomentumOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override {} + void operator()(framework::InferVarTypeContext* ctx) const override {} }; } // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/optimizers/momentum_op.cc b/paddle/fluid/operators/optimizers/momentum_op.cc index cde238c076b6991eb52dac328c3e30a045420c92..7cf218c20f4c8a22aefc8cd8ce8e1cca36dee3bf 100644 --- a/paddle/fluid/operators/optimizers/momentum_op.cc +++ b/paddle/fluid/operators/optimizers/momentum_op.cc @@ -21,18 +21,14 @@ using Tensor = framework::Tensor; class MomentumOpInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - auto input_var = op_desc.Input("Param")[0]; - for (auto& out_var : op_desc.Output("ParamOut")) { - if (block->FindRecursiveOrCreateVar(input_var).GetType() == - framework::proto::VarType::SELECTED_ROWS) { - block->FindRecursiveOrCreateVar(out_var).SetType( - framework::proto::VarType::SELECTED_ROWS); - } else if (block->FindRecursiveOrCreateVar(input_var).GetType() == + void operator()(framework::InferVarTypeContext* ctx) const override { + auto& input_var = ctx->Input("Param")[0]; + for (auto& out_var : ctx->Output("ParamOut")) { + if (ctx->GetType(input_var) == framework::proto::VarType::SELECTED_ROWS) { + ctx->SetType(out_var, framework::proto::VarType::SELECTED_ROWS); + } else if (ctx->GetType(input_var) == framework::proto::VarType::LOD_TENSOR) { - block->FindRecursiveOrCreateVar(out_var).SetType( - framework::proto::VarType::LOD_TENSOR); + ctx->SetType(out_var, framework::proto::VarType::LOD_TENSOR); } else { PADDLE_THROW( "Only support LodTensor and SelectedRows, Unexpected Input Type."); diff --git a/paddle/fluid/operators/optimizers/sgd_op.cc b/paddle/fluid/operators/optimizers/sgd_op.cc index 690381a67f89d18fe81c3b856b7ddce25d496ed0..34e99a14ff77cf8aa7d7f58529140f21d864b596 100644 --- a/paddle/fluid/operators/optimizers/sgd_op.cc +++ b/paddle/fluid/operators/optimizers/sgd_op.cc @@ -50,20 +50,18 @@ class SGDOp : public framework::OperatorWithKernel { class SGDOpInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto input_var_n = op_desc.Input("Param")[0]; - auto in_var_type = block->FindRecursiveOrCreateVar(input_var_n).GetType(); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto &input_var_n = ctx->Input("Param")[0]; + auto in_var_type = ctx->GetType(input_var_n); PADDLE_ENFORCE(in_var_type == framework::proto::VarType::SELECTED_ROWS || in_var_type == framework::proto::VarType::LOD_TENSOR, "The input Var's type should be LoDtensor or SelectedRows," " but the received var(%s)'s type is %s", input_var_n, in_var_type); - for (auto &out_var_n : op_desc.Output("ParamOut")) { - auto &out_var = block->FindRecursiveOrCreateVar(out_var_n); - if (out_var.GetType() != in_var_type) { - out_var.SetType(in_var_type); + for (auto &out_var_n : ctx->Output("ParamOut")) { + if (ctx->GetType(out_var_n) != in_var_type) { + ctx->SetType(out_var_n, in_var_type); } } } diff --git a/paddle/fluid/operators/py_func_op.cc b/paddle/fluid/operators/py_func_op.cc index 53eff2de3e3864b0f3d61f95ab5758b65f9eecb5..5300e807472d3bb243dc198c0bfd1bc572538015 100644 --- a/paddle/fluid/operators/py_func_op.cc +++ b/paddle/fluid/operators/py_func_op.cc @@ -14,8 +14,11 @@ #include "paddle/fluid/operators/py_func_op.h" +#include #include #include +#include +#include #include #include "paddle/fluid/framework/op_registry.h" @@ -91,15 +94,12 @@ static void CallPythonFunc(py::object *callable, } } -class PyFuncOpVarTypInference : public framework::VarTypeInference { +class PyFuncOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op, - framework::BlockDesc *block) const override { - auto &outs = op.Outputs(); - bool has_out = (outs.count("Out") > 0 && !outs.at("Out").empty()); + void operator()(framework::InferVarTypeContext *ctx) const override { + bool has_out = (ctx->HasOutput("Out") && !ctx->Output("Out").empty()); - auto &ins = op.Inputs(); - bool has_in = (ins.count("X") > 0 && !ins.at("X").empty()); + bool has_in = (ctx->HasInput("X") && !ctx->Input("X").empty()); /** * X or Out can be empty, so that py_func can be more flexible @@ -107,8 +107,8 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference { */ PADDLE_ENFORCE(has_in || has_out, "Input(X) or Output(Out) must exist"); - PADDLE_ENFORCE_GE(boost::get(op.GetAttr(kForwardPythonCallableId)), 0, - "Function id cannot be less than 0"); + PADDLE_ENFORCE_GE(boost::get(ctx->GetAttr(kForwardPythonCallableId)), + 0, "Function id cannot be less than 0"); if (!has_out) return; @@ -118,7 +118,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference { * the corresponding forward variable */ const std::string kGradVarSuffix = framework::kGradVarSuffix; - auto &out_var_names = outs.at("Out"); + auto &out_var_names = ctx->Output("Out"); for (auto &out_var_name : out_var_names) { if (out_var_name == framework::kEmptyVarName || out_var_name.size() < kGradVarSuffix.size()) { @@ -128,18 +128,17 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference { size_t len = out_var_name.size() - kGradVarSuffix.size(); if (out_var_name.substr(len) == kGradVarSuffix) { auto fwd_var_name = out_var_name.substr(0, len); - auto *out_var_desc = block->FindVarRecursive(out_var_name); - auto *fwd_var_desc = block->FindVarRecursive(fwd_var_name); - PADDLE_ENFORCE_NOT_NULL(out_var_desc, "Backward variable %s not found", - out_var_name); - PADDLE_ENFORCE_NOT_NULL(fwd_var_desc, "Forward variable %s not found", - fwd_var_name); + PADDLE_ENFORCE(ctx->HasVar(out_var_name), + "Backward variable %s not found", out_var_name); + PADDLE_ENFORCE(ctx->HasVar(fwd_var_name), + "Backward variable %s not found", fwd_var_name); VLOG(10) << "Infer var_desc of Output(" << out_var_name << ") as Input(" << fwd_var_name << ")"; - out_var_desc->SetShape(fwd_var_desc->GetShape()); - out_var_desc->SetDataType(fwd_var_desc->GetDataType()); - out_var_desc->SetLoDLevel(fwd_var_desc->GetLoDLevel()); - out_var_desc->SetType(fwd_var_desc->GetType()); + + ctx->SetShape(out_var_name, ctx->GetShape(fwd_var_name)); + ctx->SetDataType(out_var_name, ctx->GetDataType(fwd_var_name)); + ctx->SetLoDLevel(out_var_name, ctx->GetLoDLevel(fwd_var_name)); + ctx->SetType(out_var_name, ctx->GetType(fwd_var_name)); } } } @@ -309,5 +308,5 @@ class PyFuncOp : public framework::OperatorBase { namespace ops = paddle::operators; REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker, - ops::PyFuncOpVarTypInference, ops::PyFuncOpShapeInference, + ops::PyFuncOpVarTypeInference, ops::PyFuncOpShapeInference, ops::PyFuncOpGradDescMaker); diff --git a/paddle/fluid/operators/reader/create_custom_reader_op.cc b/paddle/fluid/operators/reader/create_custom_reader_op.cc index 85394b336fc967fc6973131fbedda4c796825185..fdc7b0f6a0e8de232865adb70677af80eb08a174 100644 --- a/paddle/fluid/operators/reader/create_custom_reader_op.cc +++ b/paddle/fluid/operators/reader/create_custom_reader_op.cc @@ -85,10 +85,10 @@ class CreateCustomReaderOpMaker : public DecoratedReaderMakerBase { AddComment(R"DOC( CreateCustomReader Operator - A custom reader can be used for input data preprocessing. - A custom reader holds its own sub-block, which will be executed in CPU - in its 'ReadNext()' function. Users can configurate their own - preprocessing pipelines by inserting operators into custom reader's + A custom reader can be used for input data preprocessing. + A custom reader holds its own sub-block, which will be executed in CPU + in its 'ReadNext()' function. Users can configurate their own + preprocessing pipelines by inserting operators into custom reader's sub-block. )DOC"); } @@ -123,23 +123,22 @@ class CustomReaderInferShape : public framework::InferShapeBase { class CustomReaderInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - framework::VarDesc* out_reader = block->FindVar(op_desc.Output("Out")[0]); - PADDLE_ENFORCE_NOT_NULL(out_reader); - out_reader->SetType(framework::proto::VarType::READER); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto& out_var_name = ctx->Output("Out")[0]; + PADDLE_ENFORCE(ctx->HasVar(out_var_name)); + ctx->SetType(out_var_name, framework::proto::VarType::READER); auto sink_var_names = - boost::get>(op_desc.GetAttr("sink_var_names")); + boost::get>(ctx->GetAttr("sink_var_names")); const auto* sub_block = - boost::get(op_desc.GetAttr("sub_block")); + boost::get(ctx->GetAttr("sub_block")); std::vector res_data_types; for (const std::string& var_name : sink_var_names) { framework::VarDesc* var = sub_block->FindVar(var_name); PADDLE_ENFORCE_NOT_NULL(var); res_data_types.emplace_back(var->GetDataType()); } - out_reader->SetDataTypes(res_data_types); + ctx->SetDataTypes(out_var_name, res_data_types); } }; diff --git a/paddle/fluid/operators/reader/read_op.cc b/paddle/fluid/operators/reader/read_op.cc index 846b2ed77e46d82fbeda8faaeed99cddf23c8824..33a69ad5fec2b850cae070ca3f113f12c4e835f9 100644 --- a/paddle/fluid/operators/reader/read_op.cc +++ b/paddle/fluid/operators/reader/read_op.cc @@ -51,19 +51,16 @@ class ReadInferShape : public framework::InferShapeBase { class ReadInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - bool infer_out = boost::get(op_desc.GetAttr("infer_out")); + void operator()(framework::InferVarTypeContext* ctx) const override { + bool infer_out = boost::get(ctx->GetAttr("infer_out")); if (infer_out) { - std::string reader_name = op_desc.Input("Reader")[0]; - std::vector out_names = op_desc.Output("Out"); - framework::VarDesc* reader = block->FindVarRecursive(reader_name); - auto dtypes = reader->GetDataTypes(); + std::string reader_name = ctx->Input("Reader")[0]; + std::vector out_names = ctx->Output("Out"); + auto dtypes = ctx->GetDataTypes(reader_name); PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size()); for (size_t i = 0; i < dtypes.size(); ++i) { - framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]); - out.SetType(framework::proto::VarType::LOD_TENSOR); - out.SetDataType(dtypes[i]); + ctx->SetType(out_names[i], framework::proto::VarType::LOD_TENSOR); + ctx->SetDataType(out_names[i], dtypes[i]); } } } diff --git a/paddle/fluid/operators/reader/reader_op_registry.cc b/paddle/fluid/operators/reader/reader_op_registry.cc index 3921eedf94abbe68bed035940913f830a6c16e48..64a1f6b68702f33ec72d901cf6621b674b331030 100644 --- a/paddle/fluid/operators/reader/reader_op_registry.cc +++ b/paddle/fluid/operators/reader/reader_op_registry.cc @@ -98,11 +98,10 @@ void FileReaderInferShape::operator()(framework::InferShapeContext* ctx) const { } } -void FileReaderInferVarType::operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const { - std::string reader_name = op_desc.Output("Out")[0]; - framework::VarDesc* reader = block->FindVarRecursive(reader_name); - reader->SetType(framework::proto::VarType::READER); +void FileReaderInferVarType::operator()( + framework::InferVarTypeContext* ctx) const { + std::string reader_name = ctx->Output("Out")[0]; + ctx->SetType(reader_name, framework::proto::VarType::READER); } void DecoratedReaderInferShape::operator()( @@ -125,13 +124,11 @@ void DecoratedReaderInferShape::operator()( } void DecoratedReaderInferVarType::operator()( - const framework::OpDesc& op_desc, framework::BlockDesc* block) const { - std::string in_reader_name = op_desc.Input("UnderlyingReader")[0]; - framework::VarDesc* in_reader = block->FindVarRecursive(in_reader_name); - std::string out_reader_name = op_desc.Output("Out")[0]; - framework::VarDesc* out_reader = block->FindVarRecursive(out_reader_name); - out_reader->SetType(framework::proto::VarType::READER); - out_reader->SetDataTypes(in_reader->GetDataTypes()); + framework::InferVarTypeContext* ctx) const { + const std::string& in_reader_name = ctx->Input("UnderlyingReader")[0]; + const std::string& out_reader_name = ctx->Output("Out")[0]; + ctx->SetType(out_reader_name, framework::proto::VarType::READER); + ctx->SetDataTypes(out_reader_name, ctx->GetDataTypes(in_reader_name)); } void DecoratedReaderMakerBase::Make() { diff --git a/paddle/fluid/operators/reader/reader_op_registry.h b/paddle/fluid/operators/reader/reader_op_registry.h index 25c3e7d77b788d38daf6dee1fc79e5c1c97e8842..795a5806050efe6469732004125e4a80b08e5304 100644 --- a/paddle/fluid/operators/reader/reader_op_registry.h +++ b/paddle/fluid/operators/reader/reader_op_registry.h @@ -14,7 +14,9 @@ #pragma once +#include #include +#include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/reader.h" @@ -59,8 +61,7 @@ class FileReaderInferShape : public framework::InferShapeBase { class FileReaderInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override; + void operator()(framework::InferVarTypeContext* ctx) const override; }; // general infershape for decorated reader @@ -72,8 +73,7 @@ class DecoratedReaderInferShape : public framework::InferShapeBase { // general var type inference for decorated reader class DecoratedReaderInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override; + void operator()(framework::InferVarTypeContext* ctx) const override; }; class DecoratedReaderMakerBase : public framework::OpProtoAndCheckerMaker { diff --git a/paddle/fluid/operators/save_op.cc b/paddle/fluid/operators/save_op.cc index fcc598f4f16138b4cc13c7b9bb59e79d80cf3596..b02c098099625ca544fd889d5bb1c13ef2374450 100644 --- a/paddle/fluid/operators/save_op.cc +++ b/paddle/fluid/operators/save_op.cc @@ -159,12 +159,9 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file class SaveOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto out_var_name = op_desc.Output(LOOKUP_TABLE_PATH).front(); - auto &out_var = block->FindRecursiveOrCreateVar(out_var_name); - auto var_type = framework::proto::VarType::RAW; - out_var.SetType(var_type); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto out_var_name = ctx->Output(LOOKUP_TABLE_PATH).front(); + ctx->SetType(out_var_name, framework::proto::VarType::RAW); } }; diff --git a/paddle/fluid/operators/scale_op.cc b/paddle/fluid/operators/scale_op.cc index 4ea77ed30db212b694f2050952655dd1a42215bd..4e4a015e18305cd7aad71722056b15216f44782e 100644 --- a/paddle/fluid/operators/scale_op.cc +++ b/paddle/fluid/operators/scale_op.cc @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/fluid/operators/scale_op.h" +#include #include #include "paddle/fluid/operators/detail/safe_ref.h" @@ -69,17 +70,13 @@ $$Out = scale*(X + bias)$$ class ScaleOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto &in_var_name = op_desc.Input("X").front(); - auto &in_var = detail::Ref(block->FindVarRecursive(in_var_name)); - - auto out_var_name = op_desc.Output("Out").front(); - auto *out_var = block->FindVarRecursive(out_var_name); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto &in_var_name = ctx->Input("X").front(); + auto out_var_name = ctx->Output("Out").front(); if (in_var_name != out_var_name) { - out_var->SetType(in_var.GetType()); - out_var->SetDataType(in_var.GetDataType()); + ctx->SetType(out_var_name, ctx->GetType(in_var_name)); + ctx->SetDataType(out_var_name, ctx->GetDataType(in_var_name)); } } }; diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc index f5d6060bc365ad5d252127d1e6806ae7f06f93f6..cc4eedbf4de2272caac75eb1e5a1d51feaf8cb38 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc @@ -30,13 +30,6 @@ class SequenceEnumerateOp : public framework::OperatorWithKernel { "Output(X) of SequenceEnumerate operator should not be null."); const auto x_dims = ctx->GetInputDim("X"); - PADDLE_ENFORCE_EQ( - x_dims.size(), 2, - "Input(X) of SequenceEnumerate operator's rank should be 2."); - PADDLE_ENFORCE_EQ(x_dims[1], 1, - "Input(X) of SequenceEnumerate operator's 2nd " - "dimension should be 1."); - const auto win_size = ctx->Attrs().Get("win_size"); ctx->SetOutputDim("Out", {x_dims[0], win_size}); ctx->ShareLoD("X", "Out"); diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h index 18da69993b2ad5879dd4678ec0d4b06d7e30cb0a..6a1eb6e625b6990506ba554de4e2398daeb64451 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h @@ -27,30 +27,47 @@ class SequenceEnumerateKernel : public framework::OpKernel { auto* in = context.Input("X"); auto* out = context.Output("Out"); int win_size = context.Attr("win_size"); - int pad_value = context.Attr("pad_value"); + auto pad_value = static_cast(context.Attr("pad_value")); auto in_dims = in->dims(); - auto in_lod = in->lod(); - + auto lod0 = in->lod()[0]; PADDLE_ENFORCE_EQ( - static_cast(in_dims[0]), in_lod[0].back(), + static_cast(in_dims[0]), lod0.back(), "The actual input data's size mismatched with LoD information."); + PADDLE_ENFORCE_EQ( + in_dims.size(), 2UL, + "Input(X) of SequenceEnumerate operator's rank should be 2."); + PADDLE_ENFORCE_EQ(in_dims[1], 1, + "Input(X) of SequenceEnumerate operator's 2nd " + "dimension should be 1."); // Generate enumerate sequence set - auto lod0 = in_lod[0]; auto in_data = in->data(); out->Resize({in_dims[0], win_size}); + out->set_lod(in->lod()); auto out_data = out->mutable_data(context.GetPlace()); for (size_t i = 0; i < lod0.size() - 1; ++i) { - for (size_t idx = lod0[i]; idx < lod0[i + 1]; ++idx) { - for (int word_idx = 0; word_idx < win_size; ++word_idx) { - size_t word_pos = idx + word_idx; - out_data[win_size * idx + word_idx] = - word_pos < lod0[i + 1] ? in_data[word_pos] : pad_value; + int start = lod0[i]; + int end = lod0[i + 1]; + int copy_size = win_size < end - start + 1 ? win_size : end - start + 1; + int mid = end + 1 - copy_size; + int pad_num = win_size - copy_size; + copy_size *= sizeof(T); + for (int idx = start; idx < mid; ++idx) { + std::memcpy(out_data, in_data + idx, copy_size); + out_data += win_size; + } + for (int idx = mid; idx < end; ++idx) { + copy_size -= sizeof(T); + pad_num++; + std::memcpy(out_data, in_data + idx, copy_size); + T* pdata = out_data + copy_size / sizeof(T); + for (int i = 0; i < pad_num; ++i) { + pdata[i] = pad_value; } + out_data += win_size; } } - out->set_lod(in->lod()); } }; diff --git a/paddle/fluid/operators/slice_op.cu b/paddle/fluid/operators/slice_op.cu index 1af57b89a3506a7211cca9233ef624b0a83e77a0..24a564f9ef9d6e7bdb80047d69b35a980a141bab 100644 --- a/paddle/fluid/operators/slice_op.cu +++ b/paddle/fluid/operators/slice_op.cu @@ -31,18 +31,18 @@ __global__ void Padding(const paddle::platform::float16* d_out, paddle::platform::float16* d_in) { int64_t out_idx = threadIdx.x + blockDim.x * blockIdx.x; if (out_idx < n) { + int64_t out_idx_tmp = out_idx; int coords[D] = {0}; for (int i = D - 1; i >= 0; --i) { - coords[i] = out_idx % out_dims[i]; - out_idx /= out_dims[i]; + coords[i] = out_idx_tmp % out_dims[i]; + out_idx_tmp /= out_dims[i]; coords[i] += offsets[i]; } int64_t in_idx = 0; - for (int i = 0; i < D - 1; ++i) { - in_idx += coords[i] * in_dims[i + 1]; + for (int i = 0; i < D; ++i) { + in_idx = in_idx * in_dims[i] + coords[i]; } - in_idx += coords[D - 1]; d_in[in_idx] = d_out[out_idx]; } @@ -80,8 +80,8 @@ class SliceGradKernel(0)); int64_t numel = d_out->numel(); - dim3 blocks((numel - 1) / PADDLE_CUDA_NUM_THREADS + 1, 1, 1); - dim3 threads(PADDLE_CUDA_NUM_THREADS, 1, 1); + dim3 blocks((numel - 1) / PADDLE_CUDA_NUM_THREADS + 1); + dim3 threads(PADDLE_CUDA_NUM_THREADS); auto stream = ctx.cuda_device_context().stream(); auto out_shape = framework::vectorize2int(out_dims); diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc index 7754d2bfebdbc81e25432641b2eb4315386f75ff..fda971b20e27b68cab6110c323469f0d1c77cb59 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/softmax_with_cross_entropy_op.h" +#include namespace paddle { namespace operators { @@ -187,7 +188,6 @@ class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { grad_op->SetType("softmax_with_cross_entropy_grad"); grad_op->SetInput("Label", Input("Label")); grad_op->SetInput("Softmax", Output("Softmax")); - grad_op->SetInput("Loss", Output("Loss")); grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax")); grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss")); grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); diff --git a/paddle/fluid/operators/split_selected_rows_op.cc b/paddle/fluid/operators/split_selected_rows_op.cc index 0e7b1463d1ba81aed53e0e3f3a90d2a1fbf0ffbc..88dfebc0cff0d0f7752c372780f1d952667ec630 100644 --- a/paddle/fluid/operators/split_selected_rows_op.cc +++ b/paddle/fluid/operators/split_selected_rows_op.cc @@ -14,6 +14,8 @@ limitations under the License. */ #include "paddle/fluid/operators/split_selected_rows_op.h" +#include + namespace paddle { namespace operators { @@ -60,10 +62,9 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel { class SplitSelectedRowsOpInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(framework::proto::VarType::SELECTED_ROWS); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &out_var : ctx->Output("Out")) { + ctx->SetType(out_var, framework::proto::VarType::SELECTED_ROWS); } } }; diff --git a/paddle/fluid/operators/sum_op.cc b/paddle/fluid/operators/sum_op.cc index 7abfbbd3cb5e5374441c511d82663788c39c04c6..1391148ccf5d13082cb31ef2e143249e8ef95bfc 100644 --- a/paddle/fluid/operators/sum_op.cc +++ b/paddle/fluid/operators/sum_op.cc @@ -12,6 +12,7 @@ limitations under the License. */ #include "paddle/fluid/operators/sum_op.h" #include +#include #include #include @@ -159,24 +160,20 @@ the LoD information with the first input. class SumOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc& op_desc, - framework::BlockDesc* block) const override { - auto& inputs = op_desc.Input("X"); + void operator()(framework::InferVarTypeContext* ctx) const override { + auto& inputs = ctx->Input("X"); auto var_type = framework::proto::VarType::SELECTED_ROWS; - for (auto& name : op_desc.Input("X")) { - VLOG(10) << name << " " - << block->FindRecursiveOrCreateVar(name).GetType(); + for (auto& name : ctx->Input("X")) { + VLOG(10) << name << " " << ctx->GetType(name); } bool any_input_is_lod_tensor = std::any_of( - inputs.begin(), inputs.end(), [block](const std::string& name) { - return block->FindRecursiveOrCreateVar(name).GetType() == - framework::proto::VarType::LOD_TENSOR; + inputs.begin(), inputs.end(), [ctx](const std::string& name) { + return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR; }); - auto is_tensor_array = [block](const std::string& name) { - return block->FindRecursiveOrCreateVar(name).GetType() == - framework::proto::VarType::LOD_TENSOR_ARRAY; + auto is_tensor_array = [ctx](const std::string& name) { + return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY; }; bool any_input_is_tensor_array = @@ -188,8 +185,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference { if (!all_inputs_are_tensor_array) { std::ostringstream os; for (auto& each : inputs) { - os << " " << each << " type is " - << block->FindRecursiveOrCreateVar(each).GetType() << "\n"; + os << " " << each << " type is " << ctx->GetType(each) << "\n"; } PADDLE_ENFORCE(all_inputs_are_tensor_array, "Not all inputs are tensor array:\n%s", os.str()); @@ -199,11 +195,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference { var_type = framework::proto::VarType::LOD_TENSOR; } - auto out_var_name = op_desc.Output("Out").front(); - auto& out_var = block->FindRecursiveOrCreateVar(out_var_name); - out_var.SetType(var_type); - auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front())); - out_var.SetDataType(in_var.GetDataType()); + auto out_var_name = ctx->Output("Out").front(); + ctx->SetType(out_var_name, var_type); + ctx->SetDataType(out_var_name, ctx->GetDataType(inputs.front())); } }; diff --git a/paddle/fluid/operators/tensor_array_to_tensor_op.cc b/paddle/fluid/operators/tensor_array_to_tensor_op.cc index 58a74ec2c104f66e9e884cffd00e7fa6622e4714..2b83c42f205c6ec0c14305586e179a003ce2619f 100644 --- a/paddle/fluid/operators/tensor_array_to_tensor_op.cc +++ b/paddle/fluid/operators/tensor_array_to_tensor_op.cc @@ -177,10 +177,9 @@ class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase { class LoDTensorArray2TensorGradInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - for (auto &out_var : op_desc.Output(framework::GradVarName("X"))) { - block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY); + void operator()(framework::InferVarTypeContext *ctx) const override { + for (auto &out_var : ctx->Output(framework::GradVarName("X"))) { + ctx->SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY); } } }; diff --git a/paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc b/paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc index a8c86de9f9a1aea9ecdedd750757ec7d25cdf2f3..6cf3e65e00ff6dd6a87d2b699ae89b9bde5d5462 100644 --- a/paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc +++ b/paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc @@ -46,8 +46,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker { class TensorRTEngineInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override {} + void operator()(framework::InferVarTypeContext *ctx) const override {} }; } // namespace operators diff --git a/paddle/fluid/operators/uniform_random_op.cc b/paddle/fluid/operators/uniform_random_op.cc index e3132ae76f624f3338d749e4fcebbd0ecd7ffe79..bb6a1c5b165693df4199fe0794daffc2cff789a4 100644 --- a/paddle/fluid/operators/uniform_random_op.cc +++ b/paddle/fluid/operators/uniform_random_op.cc @@ -112,17 +112,16 @@ uniform distribution. The random result is in set [min, max]. class UniformRandomOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDesc &op_desc, - framework::BlockDesc *block) const override { - auto out_var_name = op_desc.Output("Out").front(); + void operator()(framework::InferVarTypeContext *ctx) const override { + auto out_var_name = ctx->Output("Out").front(); auto var_data_type = static_cast( - boost::get(op_desc.GetAttr("dtype"))); + boost::get(ctx->GetAttr("dtype"))); - auto out_var = block->FindRecursiveOrCreateVar(out_var_name); - if (out_var.GetType() != framework::proto::VarType::SELECTED_ROWS) { - out_var.SetType(framework::proto::VarType::LOD_TENSOR); + if (ctx->GetType(out_var_name) != + framework::proto::VarType::SELECTED_ROWS) { + ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR); } - out_var.SetDataType(var_data_type); + ctx->SetDataType(out_var_name, var_data_type); } }; diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index 1eb8d9691a1e591117e49c2cbe1ab691cbab4a5b..19ce769ab3279ed2a0747ec9a0b6811bab674b1b 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -23,6 +23,7 @@ limitations under the License. */ #include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cudnn.h" +#include "paddle/fluid/platform/dynload/nccl.h" #include "paddle/fluid/platform/gpu_info.h" #endif diff --git a/paddle/fluid/platform/nccl_helper.h b/paddle/fluid/platform/nccl_helper.h index 0428c40f985d78f0262eb0a73984bc59ab43aac2..b8b14b3d15efb47cbf53a393476f25158ebb5dff 100644 --- a/paddle/fluid/platform/nccl_helper.h +++ b/paddle/fluid/platform/nccl_helper.h @@ -22,6 +22,7 @@ #include #include #include + #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/platform/dynload/nccl.h" #include "paddle/fluid/platform/enforce.h" @@ -79,7 +80,6 @@ struct NCCLContext { : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))), comm_{nullptr} {} cudaStream_t stream() const { return ctx_->stream(); } - ncclComm_t comm() const { return comm_; } int device_id() const { @@ -105,9 +105,6 @@ struct NCCLContextMap { order_.size(), contexts_.size(), "NCCL Context Map does not support contain two or more same device"); - if (places.size() <= 1 && num_trainers == 1) { - return; - } std::unique_ptr comms(new ncclComm_t[order_.size()]); // if num_trainers == 1, should create a new nccl id for local comms. if (num_trainers == 1 && nccl_id == nullptr) { @@ -127,8 +124,8 @@ struct NCCLContextMap { } else { rank = trainer_id; } - VLOG(30) << "init nccl rank: " << rank << " nranks: " << nranks - << "gpu id: " << gpu_id; + VLOG(3) << "init nccl rank: " << rank << " nranks: " << nranks + << " gpu id: " << gpu_id; PADDLE_ENFORCE(cudaSetDevice(gpu_id)); PADDLE_ENFORCE(platform::dynload::ncclCommInitRank( comms.get() + i, nranks, *nccl_id, rank)); diff --git a/paddle/fluid/pybind/imperative.cc b/paddle/fluid/pybind/imperative.cc index 29c8e6a12940eb5652a0a97bea27c6fed5612001..e9ed4e16443eba481143bd2095f9970bcb167d71 100644 --- a/paddle/fluid/pybind/imperative.cc +++ b/paddle/fluid/pybind/imperative.cc @@ -38,7 +38,7 @@ void BindTracer(pybind11::module* m) { .def("trace", [](imperative::Tracer& self, imperative::OpBase* op, const imperative::VarBasePtrMap& inputs, - const imperative::VarBasePtrMap& outputs, + imperative::VarBasePtrMap* outputs, framework::AttributeMap attrs_map, const platform::CPUPlace expected_place, const bool stop_gradient = false) { @@ -49,7 +49,7 @@ void BindTracer(pybind11::module* m) { .def("trace", [](imperative::Tracer& self, imperative::OpBase* op, const imperative::VarBasePtrMap& inputs, - const imperative::VarBasePtrMap& outputs, + imperative::VarBasePtrMap* outputs, framework::AttributeMap attrs_map, const platform::CUDAPlace expected_place, const bool stop_gradient = false) { diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index cc964b83324feecb9bd48f13820969a3a698f749..cef95de2ef675e417b5a2c49d01e3c85e23f9718 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -206,7 +206,7 @@ PYBIND11_MODULE(core, m) { .def_property("name", &imperative::VarBase::Name, &imperative::VarBase::SetName) .def_property_readonly("shape", &imperative::VarBase::Shape) - .def_property_readonly("dtype", &imperative::VarBase::DType) + .def_property_readonly("dtype", &imperative::VarBase::DataType) .def_property("persistable", &imperative::VarBase::IsPersistable, &imperative::VarBase::SetPersistable) .def_property("stop_gradient", &imperative::VarBase::IsStopGradient, @@ -1281,6 +1281,10 @@ All parameter, weight, gradient are variables in Paddle. "enable_inplace", [](const BuildStrategy &self) { return self.enable_inplace_; }, [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; }) + .def_property( + "fuse_all_reduce_ops", + [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; }, + [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; }) .def("_finalize_strategy_and_create_passes", [](BuildStrategy &self) -> std::shared_ptr { return self.CreatePassesFromStrategy(true); diff --git a/python/paddle/fluid/__init__.py b/python/paddle/fluid/__init__.py index cb9c75a14f5e69376e706a7da8de808a20e16f5c..3bc5cd4448198c189fff1bd23e383acc71d04374 100644 --- a/python/paddle/fluid/__init__.py +++ b/python/paddle/fluid/__init__.py @@ -132,7 +132,8 @@ def __bootstrap__(): 'allocator_strategy', 'reader_queue_speed_test_mode', 'print_sub_graph_dir', 'pe_profile_fname', 'warpctc_dir', 'inner_op_parallelism', 'enable_parallel_graph', - 'multiple_of_cupti_buffer_size', 'enable_subgraph_optimize', + 'fuse_parameter_groups_size', 'multiple_of_cupti_buffer_size', + 'enable_subgraph_optimize', 'fuse_parameter_memory_size', 'tracer_profile_fname' ] if 'Darwin' not in sysstr: diff --git a/python/paddle/fluid/compiler.py b/python/paddle/fluid/compiler.py index 75cbd141d3052c7976a84fe478ed7dcc880ad5d5..ac2a40a7c25f7c3ff0cc103647355da55d27fec3 100644 --- a/python/paddle/fluid/compiler.py +++ b/python/paddle/fluid/compiler.py @@ -119,7 +119,7 @@ class CompiledProgram(object): threads are used, how many iterations to clean up the temp variables. For more information, please refer to fluid.ExecutionStrategy. Default None. - share_vars_from(CompiledProgram): If provide, this CompiledProgram + share_vars_from(CompiledProgram): If provided, this CompiledProgram will share variables from `share_vars_from`. `share_vars_from` must be run by the executor before this CompiledProgram so that vars are ready. diff --git a/python/paddle/fluid/data_feeder.py b/python/paddle/fluid/data_feeder.py index 83d7cef19c139d1fbd7267dcaae5dcbf44532268..00c4e5691a23a9864ed3e8964f4cafaf9588c665 100644 --- a/python/paddle/fluid/data_feeder.py +++ b/python/paddle/fluid/data_feeder.py @@ -308,8 +308,8 @@ class DataFeeder(object): Args: reader(function): the reader is the function which can generate data. multi_devices(bool): whether to use multiple devices or not. - num_places(int): if the multi_devices is True, you can specify the number - of GPU to use, if 'num_places' is None, the function will use all the + num_places(int): if multi_devices is True, you can specify the number + of GPU to use, if multi_devices is None, the function will use all the GPU of the current machine. Default None. drop_last(bool): whether to drop the last batch if the size of the last batch is less than batch_size. Default True. @@ -318,7 +318,7 @@ class DataFeeder(object): dict: the result of conversion. Raises: - ValueError: If drop_last is False and the data batch which cannot fit for devices. + ValueError: If drop_last is False and the data batch cannot fit for devices. """ def __reader_creator__(): diff --git a/python/paddle/fluid/executor.py b/python/paddle/fluid/executor.py index 0f17a47d1d84fc20bd20bdfb91851d5642516057..018e38cbb3f2676ac05f1a27e9e92b6e0f16efb0 100644 --- a/python/paddle/fluid/executor.py +++ b/python/paddle/fluid/executor.py @@ -470,13 +470,21 @@ class Executor(object): program(Program|CompiledProgram): the program that need to run, if not provided, then default_main_program (not compiled) will be used. feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData} - fetch_list(list): a list of variable or variable names that user want to get, run will return them according to this list. - feed_var_name(str): the name for the input variable of feed Operator. - fetch_var_name(str): the name for the output variable of fetch Operator. - scope(Scope): the scope used to run this program, you can switch it to different scope. default is global_scope + fetch_list(list): a list of variable or variable names that user + wants to get, this method will return them according to this list. + feed_var_name(str): the name for the input variable of + feed Operator. + fetch_var_name(str): the name for the output variable of + fetch Operator. + scope(Scope): the scope used to run this program, you can switch + it to different scope. default is global_scope return_numpy(bool): if convert the fetched tensor to numpy - use_program_cache(bool): set use_program_cache to true if program not changed compare to the last step. - + use_program_cache(bool): whether to use the cached program + settings across batches. Setting it be true would be faster + only when (1) the program is not compiled with data parallel, + and (2) program, feed variable names and fetch_list variable + names do not changed compared to the last step. + Returns: list(numpy.array): fetch result according to fetch_list. diff --git a/python/paddle/fluid/layers/__init__.py b/python/paddle/fluid/layers/__init__.py index a2a808777ddc499570eb9ef92175787a14cf77ca..31effea3788c2dd1b0dab6f62194d27a2d7ce7e3 100644 --- a/python/paddle/fluid/layers/__init__.py +++ b/python/paddle/fluid/layers/__init__.py @@ -33,6 +33,7 @@ from .detection import * from . import metric_op from .metric_op import * from .learning_rate_scheduler import * +from .collective import * __all__ = [] __all__ += nn.__all__ diff --git a/python/paddle/fluid/layers/collective.py b/python/paddle/fluid/layers/collective.py new file mode 100644 index 0000000000000000000000000000000000000000..a9bce77b9d4ae8d5b08c8c4433e5010f20383cc1 --- /dev/null +++ b/python/paddle/fluid/layers/collective.py @@ -0,0 +1,47 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +from ..layer_helper import LayerHelper, unique_name + + +def _allreduce(x, out=None, reduce_type="sum"): + helper = LayerHelper("allreduce", **locals()) + # Convert string reduce type to op int type + red_typ_int = 0 + if reduce_type == "sum": + red_typ_int = 0 + elif reduce_type == "prod": + red_typ_int = 1 + elif reduce_type == "max": + red_typ_int = 2 + elif reduce_type == "min": + red_typ_int = 3 + else: + raise TypeError("reduce type can only be [sum|prod|max|min]") + + if out is None: + out = helper.create_variable( + name=unique_name.generate(".".join([x.name, 'tmp'])), + shape=x.shape, + dtype=x.dtype, + type=x.type, + persistable=x.persistable, + stop_gradient=True) + helper.append_op( + type='allreduce', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={"reduce_type": red_typ_int}) + return out diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index e7f704515df947f107df6d83a644530a0e468430..3277766171d2d812f5fb0fd81556d7f979f0702f 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -28,21 +28,9 @@ import six from functools import reduce __all__ = [ - 'While', - 'Switch', - 'increment', - 'array_write', - 'create_array', - 'less_than', - 'equal', - 'array_read', - 'array_length', - 'IfElse', - 'DynamicRNN', - 'StaticRNN', - 'reorder_lod_tensor_by_rank', - 'Print', - 'is_empty', + 'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than', + 'equal', 'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN', + 'reorder_lod_tensor_by_rank', 'Print', 'is_empty' ] @@ -1448,12 +1436,13 @@ class DynamicRNN(object): self.input_array = [] self.mem_link = [] - def step_input(self, x): + def step_input(self, x, level=0): """ Mark a sequence as a dynamic RNN input. Args: x(Variable): The input sequence. + level(int): The level of lod used to split steps. Default: 0. Returns: The current timestep in the input sequence. @@ -1471,7 +1460,8 @@ class DynamicRNN(object): parent_block.append_op( type='lod_rank_table', inputs={"X": x}, - outputs={"Out": self.lod_rank_table}) + outputs={"Out": self.lod_rank_table}, + attrs={"level": level}) self.max_seq_len = parent_block.create_var( name=unique_name.generate('dynamic_rnn_max_seq_len'), dtype='int64') diff --git a/python/paddle/fluid/tests/unittests/dist_allreduce_op.py b/python/paddle/fluid/tests/unittests/dist_allreduce_op.py new file mode 100644 index 0000000000000000000000000000000000000000..88a3cd14c43334f2abed9c8b435b64d47a65dc85 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_allreduce_op.py @@ -0,0 +1,120 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main + +DTYPE = "float32" +paddle.dataset.mnist.fetch() + +# Fix seed for test +fluid.default_startup_program().random_seed = 1 +fluid.default_main_program().random_seed = 1 + + +def cnn_model(data): + conv_pool_1 = fluid.nets.simple_img_conv_pool( + input=data, + filter_size=5, + num_filters=20, + pool_size=2, + pool_stride=2, + act="relu", + param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.01))) + conv_pool_2 = fluid.nets.simple_img_conv_pool( + input=conv_pool_1, + filter_size=5, + num_filters=50, + pool_size=2, + pool_stride=2, + act="relu", + param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.01))) + + SIZE = 10 + input_shape = conv_pool_2.shape + param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] + scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 + + predict = fluid.layers.fc( + input=conv_pool_2, + size=SIZE, + act="softmax", + param_attr=fluid.param_attr.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01))) + return predict + + +class TestDistMnist2x2(TestDistRunnerBase): + def get_model(self, batch_size=2, single_device=False): + # Input data + images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + predict = cnn_model(images) + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + # Evaluator + batch_size_tensor = fluid.layers.create_tensor(dtype='int64') + batch_acc = fluid.layers.accuracy( + input=predict, label=label, total=batch_size_tensor) + + inference_program = fluid.default_main_program().clone() + + # Reader + train_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=batch_size) + test_reader = paddle.batch( + paddle.dataset.mnist.test(), batch_size=batch_size) + + # Optimization + # TODO(typhoonzero): fix distributed adam optimizer + # opt = fluid.optimizer.AdamOptimizer( + # learning_rate=0.001, beta1=0.9, beta2=0.999) + opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9) + if single_device: + opt.minimize(avg_cost) + else: + # multi device or distributed multi device + params_grads = opt.backward(avg_cost) + data_parallel_param_grads = [] + for p, g in params_grads: + # NOTE: scale will be done on loss scale in multi_devices_graph_pass using nranks. + grad_reduce = fluid.layers.collective._allreduce(g) + data_parallel_param_grads.append([p, grad_reduce]) + opt.apply_gradients(data_parallel_param_grads) + + return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict + + +if __name__ == "__main__": + runtime_main(TestDistMnist2x2) diff --git a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py index a94487e67dc90d4df935867f841bc567c37c8aa2..61fd9af1275865f2d03e759199c219b36d3a0b5b 100644 --- a/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py +++ b/python/paddle/fluid/tests/unittests/parallel_executor_test_base.py @@ -43,6 +43,7 @@ class TestParallelExecutorBase(unittest.TestCase): use_ir_memory_optimize=True, enable_inplace=True, fuse_elewise_add_act_ops=False, + fuse_all_reduce_ops=False, fuse_relu_depthwise_conv=False, optimizer=fluid.optimizer.Adam, use_fast_executor=False, @@ -80,6 +81,7 @@ class TestParallelExecutorBase(unittest.TestCase): build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops build_strategy.fuse_relu_depthwise_conv = fuse_relu_depthwise_conv build_strategy.memory_optimize = False if memory_opt else use_ir_memory_optimize + build_strategy.fuse_all_reduce_ops = fuse_all_reduce_ops # python memory optimization is conflict with inplace pass. # Use ir graph memory optimization after inplace pass is the correct way. build_strategy.enable_inplace = False if memory_opt else enable_inplace diff --git a/python/paddle/fluid/tests/unittests/test_dist_allreduce_op.py b/python/paddle/fluid/tests/unittests/test_dist_allreduce_op.py new file mode 100644 index 0000000000000000000000000000000000000000..fbeff20c63b2f4a3f01ac4131ac7063aff0204cf --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_allreduce_op.py @@ -0,0 +1,35 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import unittest +from test_dist_base import TestDistBase + + +class TestDistMnistNCCL2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._use_reduce = False + self._use_reader_alloc = False + self._nccl2_mode = True + self._nccl2_reduce_layer = True + + def test_dist_train(self): + import paddle.fluid as fluid + if fluid.core.is_compiled_with_cuda(): + self.check_with_place("dist_allreduce_op.py", delta=1e-5) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_base.py b/python/paddle/fluid/tests/unittests/test_dist_base.py index f4d14d4024923a75ef86cd18179b8bd9eed44913..d98b839e9b3fe10cb5b79c672284f8dfb6fbf141 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_base.py +++ b/python/paddle/fluid/tests/unittests/test_dist_base.py @@ -33,7 +33,10 @@ DEFAULT_BATCH_SIZE = 2 class TestDistRunnerBase(object): - def get_model(self, batch_size=DEFAULT_BATCH_SIZE, lr=0.1): + def get_model(self, + batch_size=DEFAULT_BATCH_SIZE, + lr=0.1, + single_device=False): raise NotImplementedError( "get_model should be implemented by child classes.") @@ -76,8 +79,12 @@ class TestDistRunnerBase(object): def run_trainer(self, args): self.lr = args.lr - test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ - self.get_model(batch_size=args.batch_size) + if args.nccl2_reduce_layer_local_run: + test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ + self.get_model(batch_size=args.batch_size, single_device=True) + else: + test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ + self.get_model(batch_size=args.batch_size) if args.mem_opt: fluid.memory_optimize(fluid.default_main_program(), skip_grads=True) @@ -87,7 +94,7 @@ class TestDistRunnerBase(object): args.endpoints, args.trainers, args.sync_mode, args.dc_asgd) trainer_prog = t.get_trainer_program() - elif args.update_method == "nccl2": + elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer": # transpile for nccl2 config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" @@ -110,9 +117,9 @@ class TestDistRunnerBase(object): exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) - strategy = fluid.ExecutionStrategy() - strategy.num_threads = 1 - strategy.allow_op_delay = False + exec_strategy = fluid.ExecutionStrategy() + exec_strategy.num_threads = 1 + exec_strategy.allow_op_delay = False build_stra = fluid.BuildStrategy() # FIXME force disable enable_inplace and memory_optimize @@ -124,23 +131,25 @@ class TestDistRunnerBase(object): else: build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce + pass_builder = None if args.batch_merge_repeat > 1: pass_builder = build_stra._finalize_strategy_and_create_passes() mypass = pass_builder.insert_pass( len(pass_builder.all_passes()) - 3, "multi_batch_merge_pass") mypass.set("num_repeats", args.batch_merge_repeat) - if args.update_method == "nccl2": + if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer": build_stra.num_trainers = len(args.endpoints.split(",")) build_stra.trainer_id = args.trainer_id else: + # case args.update_method == "nccl2_reduce_layer": build_stra.num_trainers = 1 build_stra.trainer_id = 0 binary = compiler.CompiledProgram(trainer_prog).with_data_parallel( loss_name=avg_cost.name, build_strategy=build_stra, - exec_strategy=strategy) + exec_strategy=exec_strategy) feed_var_list = [ var for var in trainer_prog.global_block().vars.values() @@ -182,7 +191,7 @@ def runtime_main(test_class): '--update_method', type=str, default="local", - choices=["pserver", "nccl2", "local"]) + choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"]) parser.add_argument('--trainer_id', type=int, required=False, default=0) parser.add_argument('--trainers', type=int, required=False, default=1) parser.add_argument( @@ -198,6 +207,11 @@ def runtime_main(test_class): parser.add_argument('--lr', required=False, type=float, default=0.001) parser.add_argument( '--batch_merge_repeat', required=False, type=int, default=1) + parser.add_argument( + '--nccl2_reduce_layer_local_run', + required=False, + type=bool, + default=False) args = parser.parse_args() @@ -242,6 +256,11 @@ class TestDistBase(unittest.TestCase): self._dc_asgd = False # must use with async mode self._use_reader_alloc = True self._nccl2_mode = False + # FIXME(typhoonzero): I added this stupid argument to enable + # testing allreduce layers, which users can call layers.allreduce + # to accumulate tensors at anywhere. Find a better way to do this + # test, reduce check this argument everywhere. + self._nccl2_reduce_layer = False self._lr = 0.001 self._setup_config() self._after_setup_config() @@ -307,10 +326,16 @@ class TestDistBase(unittest.TestCase): cmd += " --batch_size %d" % batch_size if batch_merge_repeat > 1: cmd += " --batch_merge_repeat %d" % batch_merge_repeat + if self._nccl2_reduce_layer: + cmd += " --nccl2_reduce_layer_local_run 1" if self.__use_cuda: cmd += " --use_cuda" - env_local = {"CUDA_VISIBLE_DEVICES": "0"} + env_local = { + "CUDA_VISIBLE_DEVICES": "0", + "PADDLE_TRAINERS_NUM": "1", + "PADDLE_TRAINER_ID": "0" + } else: env_local = {'CPU_NUM': '1'} @@ -427,29 +452,30 @@ class TestDistBase(unittest.TestCase): sys.stderr.write("ps1 stderr: %s\n" % fn.read()) # print log - if stat0 == 0: - sys.stderr.write('trainer 0 stdout: %s\n' % pickle.loads(tr0_out)) with open("/tmp/tr0_err.log", "r") as fn: sys.stderr.write('trainer 0 stderr: %s\n' % fn.read()) - if stat1 == 0: - sys.stderr.write('trainer 1 stdout: %s\n' % pickle.loads(tr1_out)) with open("/tmp/tr1_err.log", "r") as fn: sys.stderr.write('trainer 1 stderr: %s\n' % fn.read()) return pickle.loads(tr0_out), pickle.loads(tr1_out) - def _run_cluster_nccl2(self, model, envs, check_error_log): + def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer, + check_error_log): # NOTE: we reuse ps_endpoints as nccl2 worker endpoints worker_endpoints = self._ps_endpoints.split(",") w0_ep, w1_ep = worker_endpoints + if nccl2_reduce_layer: + update_method = "nccl2_reduce_layer" + else: + update_method = "nccl2" - tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method nccl2 --lr %f" + tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f" tr0_cmd = tr_cmd % \ (self._python_interp, model, self._ps_endpoints, - 0, w0_ep, self._lr) + 0, w0_ep, update_method, self._lr) tr1_cmd = tr_cmd % \ (self._python_interp, model, self._ps_endpoints, - 1, w1_ep, self._lr) + 1, w1_ep, update_method, self._lr) if self._mem_opt: tr0_cmd += " --mem_opt" @@ -463,8 +489,17 @@ class TestDistBase(unittest.TestCase): if self.__use_cuda: tr0_cmd += " --use_cuda" tr1_cmd += " --use_cuda" - env0 = {"CUDA_VISIBLE_DEVICES": "0"} - env1 = {"CUDA_VISIBLE_DEVICES": "1"} + env0 = { + "CUDA_VISIBLE_DEVICES": "0", + # for test nccl2 layer + "PADDLE_TRAINERS_NUM": "2", + "PADDLE_TRAINER_ID": "0" + } + env1 = { + "CUDA_VISIBLE_DEVICES": "1", + "PADDLE_TRAINERS_NUM": "2", + "PADDLE_TRAINER_ID": "1" + } else: env0 = {'CPU_NUM': '1'} env1 = {'CPU_NUM': '1'} @@ -498,8 +533,6 @@ class TestDistBase(unittest.TestCase): # print log sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err) sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err) - sys.stderr.write('trainer 0 stdout: %s\n' % tr0_out) - sys.stderr.write('trainer 1 stdout: %s\n' % tr1_out) return pickle.loads(tr0_out), pickle.loads(tr1_out) @@ -528,10 +561,14 @@ class TestDistBase(unittest.TestCase): local_losses\ = self._run_local(model_file, required_envs, - check_error_log) + check_error_log) if self._nccl2_mode: - tr0_losses, tr1_losses = self._run_cluster_nccl2( - model_file, required_envs, check_error_log) + if self._nccl2_reduce_layer: + tr0_losses, tr1_losses = self._run_cluster_nccl2( + model_file, required_envs, True, check_error_log) + else: + tr0_losses, tr1_losses = self._run_cluster_nccl2( + model_file, required_envs, False, check_error_log) else: tr0_losses, tr1_losses = self._run_cluster( model_file, required_envs, check_error_log) diff --git a/python/paddle/fluid/tests/unittests/test_dist_mnist.py b/python/paddle/fluid/tests/unittests/test_dist_mnist.py index 49a2ca40e3cb1dd35027345e9c38eb8b6912d2cd..030860ec79233ba6c1482ce635fa6907c1650198 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_dist_mnist.py @@ -1,4 +1,4 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. diff --git a/python/paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py b/python/paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py new file mode 100644 index 0000000000000000000000000000000000000000..ca8669bbc6f3ea7b3f3340793712a221b0bf8c6a --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py @@ -0,0 +1,121 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from parallel_executor_test_base import TestParallelExecutorBase +import paddle.fluid as fluid +import paddle.fluid.core as core +import numpy as np +import paddle +import paddle.dataset.mnist as mnist +import unittest +import os + + +def simple_fc_net(use_feed): + img = fluid.layers.data(name='image', shape=[784], dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + hidden = img + for _ in range(4): + hidden = fluid.layers.fc( + hidden, + size=200, + act='relu', + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=1.0))) + prediction = fluid.layers.fc(hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + loss = fluid.layers.mean(loss) + return loss + + +def fc_with_batchnorm(use_feed): + img = fluid.layers.data(name='image', shape=[784], dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + hidden = img + for _ in range(2): + hidden = fluid.layers.fc( + hidden, + size=200, + act='relu', + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=1.0))) + + hidden = fluid.layers.batch_norm(input=hidden) + + prediction = fluid.layers.fc(hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + loss = fluid.layers.mean(loss) + return loss + + +class TestMNIST(TestParallelExecutorBase): + @classmethod + def setUpClass(cls): + os.environ['CPU_NUM'] = str(4) + + def _init_data(self, random=True): + np.random.seed(5) + if random: + img = np.random.random(size=[32, 784]).astype(np.float32) + else: + img = np.ones(shape=[32, 784], dtype='float32') + label = np.ones(shape=[32, 1], dtype='int64') + return img, label + + def _compare_fuse_all_reduce_ops(self, model, use_cuda, random_data=True): + if use_cuda and not core.is_compiled_with_cuda(): + return + img, label = self._init_data(random_data) + + def _optimizer(learning_rate=1e-6): + optimizer = fluid.optimizer.SGD( + learning_rate=learning_rate, + regularization=fluid.regularizer.L2Decay(1e-6)) + return optimizer + + not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence( + model, + feed_dict={"image": img, + "label": label}, + use_cuda=use_cuda, + fuse_all_reduce_ops=False, + memory_opt=False, + optimizer=_optimizer) + fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence( + model, + feed_dict={"image": img, + "label": label}, + use_cuda=use_cuda, + fuse_all_reduce_ops=True, + memory_opt=False, + optimizer=_optimizer) + + for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss): + self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) + for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss): + self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) + + def test_simple_fc_with_fuse_op(self): + self._compare_fuse_all_reduce_ops(simple_fc_net, True) + self._compare_fuse_all_reduce_ops(simple_fc_net, False) + + def test_batchnorm_fc_with_fuse_op(self): + self._compare_fuse_all_reduce_ops(fc_with_batchnorm, True) + self._compare_fuse_all_reduce_ops(fc_with_batchnorm, False) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_slice_op.py b/python/paddle/fluid/tests/unittests/test_slice_op.py index 5fdabbabeda6a2a3673042e4441d0bb298296404..aefd8cb6d3ad0fbad70dac7492abecf02b526d95 100644 --- a/python/paddle/fluid/tests/unittests/test_slice_op.py +++ b/python/paddle/fluid/tests/unittests/test_slice_op.py @@ -87,5 +87,31 @@ class TestFP16(TestSliceOp): place, ['Input'], 'Out', max_relative_error=0.006) +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") +class TestFP16_2(TestSliceOp): + def config(self): + self.dtype = "float16" + self.input = np.random.random([3, 4, 5]).astype(self.dtype) + self.starts = [0] + self.ends = [1] + self.axes = [1] + self.out = self.input[:, 0:1, :] + + def test_check_output(self): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-5) + + def test_check_grad_normal(self): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_grad_with_place( + place, ['Input'], + 'Out', + max_relative_error=0.006, + numeric_grad_delta=0.5) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/reader/__init__.py b/python/paddle/reader/__init__.py index 678026cf95970e8ff58c1bad20246059ffb464c1..b55a6298f611af1f44bc6f03c91488926604bd84 100644 --- a/python/paddle/reader/__init__.py +++ b/python/paddle/reader/__init__.py @@ -38,9 +38,8 @@ items. It can be any function with no parameter that creates a iterable Element produced from the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. -Item should be of `supported type `_ (e.g., numpy 1d -array of float32, int, list of int) +Item should be of supported type (e.g., numpy array or list/tuple of float +or int). An example implementation for single item data reader creator: @@ -62,8 +61,6 @@ An example implementation for multiple item data reader creator: yield numpy.random.uniform(-1, 1, size=width*height), label return reader - -TODO(yuyang18): Should we add whole design doc here? """ import paddle.reader.decorator diff --git a/python/paddle/reader/creator.py b/python/paddle/reader/creator.py index c861020225fb6fe0a29653363c2151b20dc8f578..353aca92f42d853a0fdd1685636da2c479586dc3 100644 --- a/python/paddle/reader/creator.py +++ b/python/paddle/reader/creator.py @@ -44,8 +44,11 @@ def text_file(path): Creates a data reader that outputs text line by line from given text file. Trailing new line ('\\\\n') of each line will be removed. - :path: path of the text file. - :returns: data reader of text file + Args: + path (str): path of the text file. + + Returns: + callable: data reader of text file. """ def reader(): @@ -59,10 +62,15 @@ def text_file(path): def recordio(paths, buf_size=100): """ - Creates a data reader from given RecordIO file paths separated by ",", - glob pattern is supported. - :path: path of recordio files, can be a string or a string list. - :returns: data reader of recordio files. + Creates a data reader from given RecordIO file paths separated + by ",", glob pattern is supported. + + Args: + paths (str|list(str)): path of recordio files. + buf_size (int): prefetched buffer size. + + Returns: + callable: data reader of recordio files. """ import recordio as rec diff --git a/python/paddle/reader/decorator.py b/python/paddle/reader/decorator.py index 168a525b58856cffe371add428341bc74b97df5d..f8c5ae0eaf45fd3ab43652c16b4954d622787702 100644 --- a/python/paddle/reader/decorator.py +++ b/python/paddle/reader/decorator.py @@ -266,20 +266,18 @@ class XmapEndSignal(): def xmap_readers(mapper, reader, process_num, buffer_size, order=False): """ - Use multiprocess to map samples from reader by a mapper defined by user. - And this function contains a buffered decorator. - :param mapper: a function to map sample. - :type mapper: callable - :param reader: the data reader to read from - :type reader: callable - :param process_num: process number to handle original sample - :type process_num: int - :param buffer_size: max buffer size - :type buffer_size: int - :param order: keep the order of reader - :type order: bool - :return: the decarated reader - :rtype: callable + Use multi-threads to map samples from reader by a mapper defined by user. + + Args: + mapper (callable): a function to map the data from reader. + reader (callable): a data reader which yields the data. + process_num (int): thread number to handle original sample. + buffer_size (int): size of the queue to read data in. + order (bool): whether to keep the data order from original reader. + Default False. + + Returns: + callable: a decorated reader with data mapping. """ end = XmapEndSignal() @@ -501,7 +499,7 @@ class PipeReader: """ :param cut_lines: cut buffer to lines :type cut_lines: bool - :param line_break: line break of the file, like \n or \r + :param line_break: line break of the file, like '\\\\n' or '\\\\r' :type line_break: string :return: one line or a buffer of bytes