Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
2f351ed5
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2f351ed5
编写于
4月 25, 2021
作者:
M
minghaoBD
提交者:
GitHub
4月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add silu op, test=develop (#32384)
上级
7ef1de67
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
191 addition
and
1 deletion
+191
-1
paddle/fluid/framework/ir/is_test_pass.cc
paddle/fluid/framework/ir/is_test_pass.cc
+1
-1
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+7
-0
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+26
-0
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+15
-0
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+67
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+1
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+1
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+34
-0
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+39
-0
未找到文件。
paddle/fluid/framework/ir/is_test_pass.cc
浏览文件 @
2f351ed5
...
...
@@ -35,7 +35,7 @@ void IsTestPass::ApplyImpl(ir::Graph* graph) const {
"hard_shrink"
,
"hard_sigmoid"
,
"relu6"
,
"soft_relu"
,
"swish"
,
"thresholded_relu"
,
"log"
,
"square"
,
"softplus"
,
"softsign"
};
"softsign"
,
"silu"
};
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
())
{
auto
*
op
=
n
->
Op
();
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
2f351ed5
...
...
@@ -162,6 +162,12 @@ $$out = \\frac{1}{1 + e^{-x}}$$
)DOC"
;
UNUSED
constexpr
char
SiluDoc
[]
=
R"DOC(
Silu Activation Operator
$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC"
;
UNUSED
constexpr
char
LogSigmoidDoc
[]
=
R"DOC(
Logsigmoid Activation Operator
...
...
@@ -697,6 +703,7 @@ It is recommended to use the defaults for this activation.
};
REGISTER_ACTIVATION_OP_MAKER
(
Sigmoid
,
SigmoidDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Silu
,
SiluDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
LogSigmoid
,
LogSigmoidDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Exp
,
ExpDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Relu
,
ReluDoc
);
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
2f351ed5
...
...
@@ -258,6 +258,31 @@ struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
// silu(x) = x / (1 + exp(-x))
template
<
typename
T
>
struct
SiluFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
temp
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
());
out
.
device
(
d
)
=
x
*
temp
;
}
};
// silu'(x) = (1 / (1 + e^{-x})) * (1 + out * e^{-x}))
template
<
typename
T
>
struct
SiluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp1
=
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
();
// 1+e^(-x)
auto
temp2
=
x
*
(
-
x
).
exp
();
// x*e^(-x)
dx
.
device
(
d
)
=
dout
*
((
static_cast
<
T
>
(
1
)
/
temp1
)
*
(
static_cast
<
T
>
(
1
)
+
(
temp2
/
temp1
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
...
...
@@ -2129,6 +2154,7 @@ struct LogGradGradFunctor : public BaseActivationFunctor<T> {
#define FOR_EACH_ACTIVATION_OP(__macro) \
__macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(silu, Silu, SiluFunctor, SiluGradFunctor); \
__macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(atan, Atan, AtanFunctor, AtanGradFunctor); \
__macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
2f351ed5
...
...
@@ -27,6 +27,7 @@ __deprecated_func_name__ = {
__activations_noattr__
=
[
'sigmoid'
,
'silu'
,
'logsigmoid'
,
'tanh_shrink'
,
'softplus'
,
...
...
@@ -100,6 +101,20 @@ Examples:
"""
)
add_sample_code
(
globals
()[
"silu"
],
r
"""
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
out = F.silu(x)
print(out)
# [ 0.7310586 1.7615942 2.8577224, 3.9280552 ]
"""
)
add_sample_code
(
globals
()[
"logsigmoid"
],
r
"""
Examples:
.. code-block:: python
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
2f351ed5
...
...
@@ -119,6 +119,72 @@ class TestSigmoid(TestActivation):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.01
)
class
TestSilu
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"silu"
self
.
init_dtype
()
np
.
random
.
seed
(
1024
)
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
x
/
(
np
.
exp
(
-
x
)
+
1
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSiluAPI
(
unittest
.
TestCase
):
# test paddle.nn.Silu, paddle.nn.functional.silu
def
setUp
(
self
):
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
'float32'
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
fluid
.
data
(
'X'
,
[
11
,
17
])
out1
=
F
.
silu
(
x
)
m
=
paddle
.
nn
.
Silu
()
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
self
.
x_np
/
(
1
+
np
.
exp
(
-
self
.
x_np
))
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
silu
(
x
)
m
=
paddle
.
nn
.
Silu
()
out2
=
m
(
x
)
out_ref
=
self
.
x_np
/
(
1
+
np
.
exp
(
-
self
.
x_np
))
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_errors
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
F
.
silu
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
paddle
.
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
11
,
17
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
silu
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
11
,
17
],
dtype
=
'float16'
)
F
.
silu
(
x_fp16
)
class
TestLogSigmoid
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"logsigmoid"
...
...
@@ -2629,6 +2695,7 @@ def create_test_act_fp16_class(parent,
create_test_act_fp16_class
(
TestActivation
)
create_test_act_fp16_class
(
TestSigmoid
)
create_test_act_fp16_class
(
TestSilu
)
create_test_act_fp16_class
(
TestLogSigmoid
)
create_test_act_fp16_class
(
TestTanh
)
create_test_act_fp16_class
(
TestTanhshrink
)
...
...
python/paddle/nn/__init__.py
浏览文件 @
2f351ed5
...
...
@@ -55,6 +55,7 @@ from .layer.activation import PReLU #DEFINE_ALIAS
from
.layer.activation
import
ReLU
#DEFINE_ALIAS
from
.layer.activation
import
ReLU6
#DEFINE_ALIAS
from
.layer.activation
import
SELU
#DEFINE_ALIAS
from
.layer.activation
import
Silu
#DEFINE_ALIAS
from
.layer.activation
import
LeakyReLU
#DEFINE_ALIAS
from
.layer.activation
import
Sigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Hardsigmoid
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
2f351ed5
...
...
@@ -46,6 +46,7 @@ from .activation import relu_ #DEFINE_ALIAS
from
.activation
import
relu6
#DEFINE_ALIAS
from
.activation
import
selu
#DEFINE_ALIAS
from
.activation
import
sigmoid
#DEFINE_ALIAS
from
.activation
import
silu
#DEFINE_ALIAS
# from .activation import soft_relu #DEFINE_ALIAS
from
.activation
import
softmax
#DEFINE_ALIAS
from
.activation
import
softmax_
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
2f351ed5
...
...
@@ -49,6 +49,7 @@ __all__ = [
'softshrink'
,
'softsign'
,
'sigmoid'
,
'silu'
'swish'
,
'tanh'
,
'tanh_'
,
...
...
@@ -761,6 +762,39 @@ def selu(x,
return
out
def
silu
(
x
,
name
=
None
):
"""
silu activation.
.. math:
silu(x) =
\f
rac{x}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
silu
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'silu'
)
helper
=
LayerHelper
(
"silu"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'silu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
})
return
out
def
softmax
(
x
,
axis
=-
1
,
dtype
=
None
,
name
=
None
):
r
"""
This operator implements the softmax layer. The calculation process is as follows:
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
2f351ed5
...
...
@@ -27,6 +27,7 @@ __all__ = [
'SELU'
,
'LeakyReLU'
,
'Sigmoid'
,
'Silu'
,
'Hardsigmoid'
,
'Softmax'
,
'Softplus'
,
...
...
@@ -919,6 +920,44 @@ class ThresholdedReLU(layers.Layer):
return
'threshold={}{}'
.
format
(
self
.
_threshold
,
name_str
)
class
Silu
(
layers
.
Layer
):
"""
Silu Activation.
.. math::
Silu(x) =
\f
rac{x}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, or float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
m = paddle.nn.Silu()
out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Silu
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
silu
(
x
,
self
.
_name
)
def
extra_repr
(
self
):
name_str
=
'name={}'
.
format
(
self
.
_name
)
if
self
.
_name
else
''
return
name_str
class
LogSigmoid
(
layers
.
Layer
):
r
"""
LogSigmoid Activation.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录