Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
2dde0eb0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2dde0eb0
编写于
7月 12, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
7月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize perfermance of multiple-dimension reduce (#33761)
上级
4d259b91
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
257 addition
and
151 deletion
+257
-151
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
+256
-150
paddle/fluid/platform/fast_divmod.h
paddle/fluid/platform/fast_divmod.h
+1
-1
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
浏览文件 @
2dde0eb0
...
...
@@ -34,9 +34,11 @@ namespace cub = hipcub;
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/fast_divmod.h"
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4
namespace
paddle
{
namespace
operators
{
...
...
@@ -72,6 +74,8 @@ static inline int GetLastPow2(int n) {
return
std
::
max
(
1
,
n
-
(
n
>>
1
));
}
static
inline
int64_t
AlignUp
(
int64_t
a
,
int64_t
b
)
{
return
(
a
+
b
-
1
)
/
b
;
}
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static
inline
std
::
vector
<
int
>
GetDimStrides
(
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
idx
)
{
...
...
@@ -122,10 +126,10 @@ static inline void CheckReduceRank(int reduce_rank, int rank) {
template
<
typename
T
,
size_t
ElementCount
,
typename
VectorLikeType
>
static
inline
paddle
::
framework
::
Array
<
T
,
ElementCount
>
VectorToArray
(
const
VectorLikeType
&
vec
)
{
PADDLE_ENFORCE_
EQ
(
vec
.
size
(),
ElementCount
,
PADDLE_ENFORCE_
LE
(
vec
.
size
(),
ElementCount
,
platform
::
errors
::
InvalidArgument
(
"Cub reduce Array: size not match. Received "
"vec.size() %d
!=
ElementCount %d."
,
"vec.size() %d
>
ElementCount %d."
,
vec
.
size
(),
ElementCount
));
size_t
n
=
static_cast
<
size_t
>
(
vec
.
size
());
paddle
::
framework
::
Array
<
T
,
ElementCount
>
ret
;
...
...
@@ -138,6 +142,7 @@ static inline paddle::framework::Array<T, ElementCount> VectorToArray(
}
// namespace detail
using
Tensor
=
framework
::
Tensor
;
constexpr
int
kMaxRank
=
framework
::
DDim
::
kMaxRank
;
enum
ReduceType
{
kReduceAll
=
0x00
,
// when reduce_rank == x_rank
...
...
@@ -146,6 +151,41 @@ enum ReduceType {
kReduceAny
=
0x03
,
// when reduce_dim.size() > 1
};
struct
IndexCalculator
{
IndexCalculator
(
int
dim
,
const
std
::
vector
<
int
>&
cal_dims
,
const
std
::
vector
<
int
>&
cal_strides
,
const
std
::
vector
<
int
>&
full_strides
)
:
dim
(
dim
)
{
dims
=
detail
::
VectorToArray
<
int
,
kMaxRank
>
(
cal_dims
);
strides
=
detail
::
VectorToArray
<
int
,
kMaxRank
>
(
full_strides
);
std
::
vector
<
FastDivMod
>
cal_divmoders
;
// fast divmod
for
(
auto
i
:
cal_strides
)
{
cal_divmoders
.
push_back
(
FastDivMod
(
i
));
}
divmoders
=
detail
::
VectorToArray
<
FastDivMod
,
kMaxRank
>
(
cal_divmoders
);
}
__device__
inline
int
Get
(
int
offset
)
const
{
int
index
=
0
;
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxRank
;
++
i
)
{
if
(
i
==
dim
)
{
break
;
}
auto
divmod
=
divmoders
[
i
].
Divmod
(
offset
);
index
+=
(
divmod
.
val
[
0
]
*
strides
[
dims
[
i
]]);
offset
=
divmod
.
val
[
1
];
}
return
index
;
}
int
dim
;
framework
::
Array
<
int
,
kMaxRank
>
dims
;
framework
::
Array
<
int
,
kMaxRank
>
strides
;
framework
::
Array
<
FastDivMod
,
kMaxRank
>
divmoders
;
};
// reduce config
template
<
typename
Ty
>
struct
ReduceConfig
{
...
...
@@ -264,6 +304,9 @@ struct ReduceConfig {
}
left_dim
.
assign
(
left_set
.
begin
(),
left_set
.
end
());
// if the last dim gets involved in reduction
reduce_lastdim
=
(
reduce_dim
.
back
()
==
x_dim
.
size
()
-
1
);
}
// set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
...
...
@@ -300,20 +343,76 @@ struct ReduceConfig {
if
(
rank
==
reduce_rank
)
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAll
);
}
else
if
(
rank
==
2
&&
reduce_rank
==
1
&&
reduce_dim
[
0
]
==
1
)
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceLastDim
);
}
else
if
(
reduce_rank
==
1
&&
((
rank
==
2
&&
is_large_enough
)
||
rank
!=
2
))
{
// ReduceFirstDim and reduceSecondDim
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceHigherDim
);
}
else
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
);
}
}
void
SetBlockDimForReduceAny
(
dim3
*
block_dim
,
dim3
*
grid_dim
)
{
constexpr
int
min_reduce_num_per_thread
=
16
;
constexpr
int
max_reduce_num_per_thread
=
256
;
constexpr
int
max_num_threads
=
detail
::
kMaxThread
;
// set block size.
// 1. if reduce_lastdim == true, block is 1-D, no need reduction in block y;
// 2. if reduce_lastdim == false, block is 2-D, if it is necessary,
// it should reduce in block y.
int
grid_num
,
reduce_num_per_thread
;
if
(
reduce_lastdim
)
{
block_dim
->
x
=
detail
::
GetBlockDim
(
reduce_num
);
block_dim
->
y
=
1
;
grid_num
=
left_num
;
reduce_num_per_thread
=
detail
::
AlignUp
(
reduce_num
,
block_dim
->
x
*
block_dim
->
y
);
}
else
{
int
block_x
=
detail
::
GetBlockDim
(
left_num
);
int
block_y
=
detail
::
GetBlockDim
(
reduce_num
);
block_dim
->
x
=
std
::
min
(
block_x
,
32
);
block_dim
->
y
=
std
::
min
(
block_y
,
static_cast
<
int
>
(
max_num_threads
/
block_dim
->
x
));
block_dim
->
x
=
std
::
min
(
block_x
,
static_cast
<
int
>
(
max_num_threads
/
block_dim
->
y
));
grid_num
=
detail
::
AlignUp
(
left_num
,
block_dim
->
x
);
reduce_num_per_thread
=
detail
::
AlignUp
(
reduce_num
,
block_dim
->
y
);
}
int
device_id
=
platform
::
GetCurrentDeviceId
();
int
max_mp
=
platform
::
GetCUDAMultiProcessors
(
device_id
);
int
max_threads_per_mp
=
platform
::
GetCUDAMaxThreadsPerMultiProcessor
(
device_id
);
int
max_threads
=
max_threads_per_mp
*
max_mp
;
int
num_threads
=
block_dim
->
x
*
block_dim
->
y
;
int
max_num_blocks
=
max_threads
/
num_threads
;
// set grid size.
// Whether to set grid.y larger than 1, there are 3 following rules:
// 1. The number that each thread process should no less than
// min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
// 2. It should maximize the utilization of SM.
// So we choose the minimum between input_split_num_1 and input_split_num_3
// to make each thread process as mush data as possible. Meanwhile,
// the number cannot be larger than max_reduce_num_per_thread, so we
// choose the maximum between the result above and input_split_num_2.
int
input_split_num_1
=
detail
::
AlignUp
(
reduce_num_per_thread
,
min_reduce_num_per_thread
);
int
input_split_num_2
=
detail
::
AlignUp
(
reduce_num_per_thread
,
max_reduce_num_per_thread
);
int
input_split_num_3
=
detail
::
AlignUp
(
max_num_blocks
,
grid_num
);
grid_dim
->
x
=
grid_num
;
grid_dim
->
y
=
std
::
max
(
std
::
min
(
input_split_num_1
,
input_split_num_3
),
input_split_num_2
);
// if grid.y > 1, we need launch reduce kernel again.
if
(
grid_dim
->
y
>
1
)
{
should_reduce_again
=
true
;
}
}
// set block and grid for launch kernel
// for ReduceHigherDim: if block is enough -> splite reduce_num
// else init block(32, 1) grid(block_num, 1)
...
...
@@ -368,6 +467,8 @@ struct ReduceConfig {
grid_dim
.
x
=
(
left_num
+
block_dim
.
x
-
1
)
/
block_dim
.
x
;
grid_dim
.
y
=
1
;
}
}
else
if
(
reduce_type
==
ReduceType
::
kReduceAny
)
{
SetBlockDimForReduceAny
(
&
block_dim
,
&
grid_dim
);
}
block
=
block_dim
;
...
...
@@ -388,6 +489,7 @@ struct ReduceConfig {
int
left_num
;
int
blocking_size
;
bool
should_reduce_again
;
bool
reduce_lastdim
;
Ty
*
output_data
;
...
...
@@ -395,8 +497,12 @@ struct ReduceConfig {
dim3
grid
;
};
static
__device__
int
SharedMemoryIndex
(
int
index
)
{
return
(
threadIdx
.
y
+
index
)
*
blockDim
.
x
+
threadIdx
.
x
;
}
template
<
typename
T
,
typename
ReduceOp
>
__device__
__forceinlin
e__
T
WarpReduce
(
T
val
,
ReduceOp
reducer
)
{
static
__devic
e__
T
WarpReduce
(
T
val
,
ReduceOp
reducer
)
{
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
true
);
for
(
int
stride
=
detail
::
kWarpSize
/
2
;
stride
>
0
;
stride
>>=
1
)
{
...
...
@@ -416,7 +522,7 @@ __device__ __forceinline__ T WarpReduce(T val, ReduceOp reducer) {
* res to warp0 and process the second WarpReduce
*/
template
<
typename
T
,
typename
ReduceOp
>
__device__
__forceinline__
T
Block
Reduce
(
T
val
,
ReduceOp
reducer
)
{
static
__device__
T
BlockX
Reduce
(
T
val
,
ReduceOp
reducer
)
{
using
detail
::
kWarpSize
;
__shared__
T
shared
[
kWarpSize
];
int
block_dim_x
=
blockDim
.
x
;
...
...
@@ -441,12 +547,26 @@ __device__ __forceinline__ T BlockReduce(T val, ReduceOp reducer) {
return
val
;
}
template
<
typename
T
,
typename
ReduceOp
>
static
__device__
T
BlockYReduce
(
T
val
,
ReduceOp
reducer
)
{
__shared__
T
shared_memory
[
detail
::
kMaxThread
];
shared_memory
[
SharedMemoryIndex
(
0
)]
=
val
;
for
(
int
stride
=
blockDim
.
y
/
2
;
stride
>
0
;
stride
>>=
1
)
{
__syncthreads
();
if
(
threadIdx
.
y
<
stride
&&
threadIdx
.
y
+
stride
<
blockDim
.
y
)
{
T
temp
=
shared_memory
[
SharedMemoryIndex
(
stride
)];
val
=
reducer
(
val
,
temp
);
}
shared_memory
[
SharedMemoryIndex
(
0
)]
=
val
;
}
return
val
;
}
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, this
// function will be used
// blockId.x -> left_num, threadId.x -> reduce_num
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
__device__
__forceinline__
void
ReduceLastDim
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
__device__
void
ReduceLastDim
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
)
{
int
idx_x
=
blockIdx
.
x
*
reduce_num
;
...
...
@@ -458,7 +578,7 @@ __device__ __forceinline__ void ReduceLastDim(const Tx* x, Ty* y,
}
__syncthreads
();
reduce_var
=
BlockReduce
(
reduce_var
,
reducer
);
reduce_var
=
Block
X
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
...
...
@@ -471,11 +591,9 @@ __device__ __forceinline__ void ReduceLastDim(const Tx* x, Ty* y,
// if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx / 32
// else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
__device__
__forceinline__
void
ReduceHigherDim
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
block_size
)
{
__device__
void
ReduceHigherDim
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
block_size
)
{
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
idy
=
blockIdx
.
y
*
block_size
;
...
...
@@ -497,71 +615,97 @@ __device__ __forceinline__ void ReduceHigherDim(const Tx* x, Ty* y,
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
// blockId.x -> left_num, threadId.x -> reduce_num
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
Rank
,
int
ReduceRank
>
__device__
__forceinline__
void
ReduceAny
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
int
reduce_num
,
paddle
::
framework
::
Array
<
int
,
Rank
>
x_strides
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_dim
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_strides
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
int
sub_index
[
Rank
];
int
left_idx
=
blockIdx
.
x
;
for
(
int
i
=
0
;
i
<
Rank
-
ReduceRank
;
++
i
)
{
sub_index
[
left_dim
[
i
]]
=
left_idx
/
left_strides
[
i
];
left_idx
%=
left_strides
[
i
];
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
__device__
void
ReduceAny
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
bool
reduce_lastdim
,
const
IndexCalculator
&
reduce_index_calculator
,
const
IndexCalculator
&
left_index_calculator
)
{
int
input_idx
,
left_idx
,
stride
;
// the last dim gets involved in reduction
if
(
reduce_lastdim
)
{
input_idx
=
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
;
left_idx
=
blockIdx
.
x
;
stride
=
gridDim
.
y
*
blockDim
.
x
;
}
else
{
input_idx
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
left_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
stride
=
gridDim
.
y
*
blockDim
.
y
;
}
// calculate the offset, means the addr where each thread really start.
int
input_offset
=
left_index_calculator
.
Get
(
left_idx
);
const
Tx
*
input
=
x
+
input_offset
;
Ty
reduce_var
=
init
;
int
reduce_idx
=
threadIdx
.
x
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
// 1. reduce for each thread
if
(
left_idx
<
left_num
)
{
// load REDUCE_VEC_SIZE data once, and then compute
Tx
input_reg
[
REDUCE_VEC_SIZE
];
int
bound
=
reduce_num
-
(
REDUCE_VEC_SIZE
-
1
)
*
stride
;
while
(
input_idx
<
bound
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
REDUCE_VEC_SIZE
;
++
i
)
{
int
reduce_idx
=
input_idx
+
i
*
stride
;
int
idx_x
=
reduce_index_calculator
.
Get
(
reduce_idx
);
input_reg
[
i
]
=
input
[
idx_x
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
{
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
#pragma unroll
for
(
int
i
=
0
;
i
<
REDUCE_VEC_SIZE
;
++
i
)
{
reduce_var
=
reducer
(
reduce_var
,
transformer
(
input_reg
[
i
]));
}
Ty
reduce_var
=
static_cast
<
Ty
>
(
transformer
(
x
[
idx_x
]));
for
(
int
i
=
threadIdx
.
x
+
blockDim
.
x
;
i
<
reduce_num
;
i
+=
blockDim
.
x
)
{
int
reduce_idx
=
i
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
input_idx
+=
REDUCE_VEC_SIZE
*
stride
;
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
{
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
// deal with the remain part
int
input_idx_tmp
=
input_idx
;
#pragma unroll
for
(
int
i
=
0
;
i
<
REDUCE_VEC_SIZE
;
++
i
)
{
if
(
input_idx
>=
reduce_num
)
{
break
;
}
int
reduce_idx
=
input_idx
;
int
idx_x
=
reduce_index_calculator
.
Get
(
reduce_idx
);
input_reg
[
i
]
=
input
[
idx_x
];
input_idx
+=
stride
;
}
input_idx
=
input_idx_tmp
;
#pragma unroll
for
(
int
i
=
0
;
i
<
REDUCE_VEC_SIZE
;
++
i
)
{
if
(
input_idx
>=
reduce_num
)
{
break
;
}
reduce_var
=
reducer
(
reduce_var
,
transformer
(
input_reg
[
i
]));
input_idx
+=
stride
;
}
}
reduce_var
=
static_cast
<
Ty
>
(
reducer
(
reduce_var
,
static_cast
<
Ty
>
(
transformer
(
x
[
idx_x
]))));
// 2. reduce in block y
if
(
blockDim
.
y
>
1
)
{
reduce_var
=
BlockYReduce
(
reduce_var
,
reducer
);
}
__syncthreads
();
reduce_var
=
BlockReduce
(
reduce_var
,
reducer
);
if
(
reduce_lastdim
)
{
// 3. reduce in block x
reduce_var
=
BlockXReduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
y
[
blockIdx
.
x
+
blockIdx
.
y
*
gridDim
.
x
]
=
reduce_var
;
}
}
else
{
if
(
left_idx
<
left_num
&&
threadIdx
.
y
==
0
)
{
y
[
blockIdx
.
y
*
left_num
+
left_idx
]
=
reduce_var
;
}
}
}
// module function designed for global function
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
Rank
,
int
ReduceRank
>
__device__
__forceinline__
void
ReduceModule
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
blocking_size
,
int
reduce_type
,
paddle
::
framework
::
Array
<
int
,
Rank
>
x_strides
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_dim
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_strides
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
// reduce_rank == 1 && reduce_dim[0] == x_dim.size() - 1
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
__device__
void
ReduceModule
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
blocking_size
,
int
reduce_type
,
bool
reduce_lastdim
,
const
IndexCalculator
&
reduce_index_calculator
,
const
IndexCalculator
&
left_index_calculator
)
{
if
(
reduce_type
==
ReduceType
::
kReduceLastDim
)
{
ReduceLastDim
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
x
,
y
,
reducer
,
transformer
,
init
,
reduce_num
);
...
...
@@ -573,104 +717,66 @@ __device__ __forceinline__ void ReduceModule(
// reduce_rank >= 2
}
else
{
ReduceAny
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
,
Rank
,
ReduceRank
>
(
x
,
y
,
reducer
,
transformer
,
reduce_num
,
x_strides
,
reduce_
dim
,
reduce_
strides
,
left_dim
,
left_strides
);
ReduceAny
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
x
,
y
,
reducer
,
transformer
,
init
,
reduce_num
,
left_num
,
reduce_last
dim
,
reduce_
index_calculator
,
left_index_calculator
);
}
}
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
Rank
,
int
ReduceRank
>
__global__
void
ReduceKernelFunction
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
block_size
,
int
reduce_type
,
paddle
::
framework
::
Array
<
int
,
Rank
>
x_strides
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_dim
,
paddle
::
framework
::
Array
<
int
,
ReduceRank
>
reduce_strides
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
paddle
::
framework
::
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
ReduceModule
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
,
Rank
,
ReduceRank
>
(
x
,
y
,
reducer
,
transformer
,
init
,
reduce_num
,
left_num
,
block_size
,
reduce_type
,
x_strides
,
reduce_dim
,
reduce_strides
,
left_dim
,
left_strides
);
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
__global__
void
ReduceKernelFunction
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
int
left_num
,
int
blocking_size
,
int
reduce_type
,
bool
reduce_lastdim
,
IndexCalculator
reduce_index_calculator
,
IndexCalculator
left_index_calculator
)
{
ReduceModule
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
x
,
y
,
reducer
,
transformer
,
init
,
reduce_num
,
left_num
,
blocking_size
,
reduce_type
,
reduce_lastdim
,
reduce_index_calculator
,
left_index_calculator
);
}
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
int
Rank
,
int
ReduceRank
>
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
>
static
void
LaunchReduceKernel
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
ReduceOp
&
reducer
,
Ty
init
,
gpuStream_t
stream
,
ReduceConfig
<
Ty
>
config
)
{
using
TransformOp
=
typename
ReduceOp
::
Transformer
;
ReduceKernelFunction
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
,
Rank
,
ReduceRank
><<<
config
.
grid
,
config
.
block
,
0
,
stream
>>>
(
int
reduce_rank
=
config
.
reduce_strides
.
size
();
int
left_rank
=
config
.
left_strides
.
size
();
auto
reduce_index_calculator
=
IndexCalculator
(
reduce_rank
,
config
.
reduce_dim
,
config
.
reduce_strides
,
config
.
x_strides
);
auto
left_index_calculator
=
IndexCalculator
(
left_rank
,
config
.
left_dim
,
config
.
left_strides
,
config
.
x_strides
);
ReduceKernelFunction
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
><<<
config
.
grid
,
config
.
block
,
0
,
stream
>>>
(
x_data
,
config
.
output_data
,
reducer
,
TransformOp
(
config
.
reduce_num
),
init
,
config
.
reduce_num
,
config
.
left_num
,
config
.
blocking_size
,
config
.
reduce_type
,
detail
::
VectorToArray
<
int
,
Rank
>
(
config
.
x_strides
),
detail
::
VectorToArray
<
int
,
ReduceRank
>
(
config
.
reduce_dim
),
detail
::
VectorToArray
<
int
,
ReduceRank
>
(
config
.
reduce_strides
),
detail
::
VectorToArray
<
int
,
Rank
-
ReduceRank
>
(
config
.
left_dim
),
detail
::
VectorToArray
<
int
,
Rank
-
ReduceRank
>
(
config
.
left_strides
));
config
.
reduce_type
,
config
.
reduce_lastdim
,
reduce_index_calculator
,
left_index_calculator
);
if
(
config
.
should_reduce_again
)
{
dim3
block
(
config
.
block
.
x
,
1
,
1
);
dim3
grid
(
config
.
grid
.
x
,
1
,
config
.
grid
.
z
);
dim3
block
;
dim3
grid
;
if
(
config
.
reduce_lastdim
)
{
block
=
dim3
(
32
,
1
,
1
);
grid
=
dim3
(
detail
::
AlignUp
(
config
.
left_num
,
32
),
1
,
1
);
}
else
{
block
=
dim3
(
config
.
block
.
x
,
1
,
1
);
grid
=
dim3
(
config
.
grid
.
x
,
1
,
config
.
grid
.
z
);
}
ReduceKernelFunction
<
Ty
,
Ty
,
ReduceOp
,
detail
::
IdentityFunctor
<
Ty
>
,
Rank
,
ReduceRank
><<<
grid
,
block
,
0
,
stream
>>>
(
ReduceKernelFunction
<
Ty
,
Ty
,
ReduceOp
,
detail
::
IdentityFunctor
<
Ty
>
><<<
grid
,
block
,
0
,
stream
>>>
(
config
.
output_data
,
y_data
,
reducer
,
detail
::
IdentityFunctor
<
Ty
>
(
config
.
grid
.
y
),
init
,
config
.
grid
.
y
,
config
.
left_num
,
config
.
grid
.
y
,
ReduceType
::
kReduceHigherDim
,
detail
::
VectorToArray
<
int
,
Rank
>
(
config
.
x_strides
),
detail
::
VectorToArray
<
int
,
ReduceRank
>
(
config
.
reduce_dim
),
detail
::
VectorToArray
<
int
,
ReduceRank
>
(
config
.
reduce_strides
),
detail
::
VectorToArray
<
int
,
Rank
-
ReduceRank
>
(
config
.
left_dim
),
detail
::
VectorToArray
<
int
,
Rank
-
ReduceRank
>
(
config
.
left_strides
));
config
.
reduce_lastdim
,
reduce_index_calculator
,
left_index_calculator
);
}
}
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
>
static
void
ReduceKernelImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
ReduceOp
&
reducer
,
Ty
init
,
gpuStream_t
stream
,
ReduceConfig
<
Ty
>
config
)
{
int
reduce_rank
=
config
.
reduce_strides
.
size
();
int
rank
=
config
.
x_strides
.
size
();
#define CUB_RANK_CASE(i, ...) \
case i: { \
constexpr auto Rank = i; \
switch (reduce_rank) { __VA_ARGS__; } \
} break
#define CUB_REDUCE_RANK_CASE(i, ...) \
case i: { \
constexpr auto ReduceRank = i; \
LaunchReduceKernel<Tx, Ty, ReduceOp, Rank, ReduceRank>( \
x_data, y_data, reducer, init, stream, config); \
} break
detail
::
CheckReduceRank
(
reduce_rank
,
rank
);
switch
(
rank
)
{
CUB_RANK_CASE
(
2
,
CUB_REDUCE_RANK_CASE
(
1
););
CUB_RANK_CASE
(
3
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
4
,
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
5
,
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
6
,
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
7
,
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
8
,
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
9
,
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
););
}
#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}
template
<
typename
Tx
,
typename
Ty
,
template
<
typename
,
typename
>
class
ReduceOp
>
void
TensorReduceFunctorImpl
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
...
...
@@ -718,8 +824,8 @@ void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y,
return
;
}
ReduceKernelImpl
<
Tx
,
Ty
,
ReduceOp
<
Tx
,
Ty
>>
(
x_data
,
y_data
,
reducer
,
reducer
.
initial
(),
stream
,
config
);
LaunchReduceKernel
<
Tx
,
Ty
,
ReduceOp
<
Tx
,
Ty
>>
(
x_data
,
y_data
,
reducer
,
reducer
.
initial
(),
stream
,
config
);
}
template
<
typename
Tx
,
template
<
typename
,
typename
>
class
ReduceOp
>
...
...
paddle/fluid/platform/fast_divmod.h
浏览文件 @
2dde0eb0
...
...
@@ -54,7 +54,7 @@ struct FastDivMod {
return
(
t
+
n
)
>>
shift_val
;
}
__device__
__forceinline__
DivModT
Divmod
(
uint32_t
n
)
{
__device__
__forceinline__
DivModT
Divmod
(
uint32_t
n
)
const
{
uint32_t
q
=
Div
(
n
);
DivModT
result
=
{
q
,
n
-
q
*
divisor
};
return
result
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录