Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
2b8b16d7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2b8b16d7
编写于
2年前
作者:
F
furnace
提交者:
GitHub
2年前
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add reduce_min (#39019)
[NPU] add reduce_min
上级
35b03e1c
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
418 addition
and
0 deletion
+418
-0
paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc
paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc
+118
-0
python/paddle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py
...addle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py
+300
-0
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc
0 → 100644
浏览文件 @
2b8b16d7
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
ReduceMinNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
dims
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
ctx
.
Attr
<
bool
>
(
"keep_dim"
);
bool
reduce_all
=
ctx
.
Attr
<
bool
>
(
"reduce_all"
);
int
out_dtype
=
ctx
.
Attr
<
int
>
(
"out_dtype"
);
auto
place
=
ctx
.
GetPlace
();
framework
::
Tensor
cast_out
(
x
->
type
());
cast_out
.
Resize
(
out
->
dims
());
cast_out
.
mutable_data
<
T
>
(
place
);
auto
cast_out_dtype
=
x
->
type
();
if
(
out_dtype
!=
-
1
)
{
cast_out_dtype
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
);
}
if
(
x
->
type
()
!=
cast_out_dtype
)
{
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP32
)
{
out
->
mutable_data
<
float
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP16
)
{
out
->
mutable_data
<
paddle
::
platform
::
float16
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
INT16
)
{
out
->
mutable_data
<
int16_t
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
INT32
)
{
out
->
mutable_data
<
int32_t
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
INT64
)
{
out
->
mutable_data
<
int64_t
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP64
)
{
out
->
mutable_data
<
double
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
BOOL
)
{
out
->
mutable_data
<
bool
>
(
place
);
}
}
else
{
out
->
ShareDataWith
(
cast_out
);
}
framework
::
NPUAttributeMap
attr_input
=
{{
"axes"
,
dims
},
{
"keep_dims"
,
keep_dim
}};
if
(
reduce_all
)
{
std
::
vector
<
int
>
dim_vec
;
for
(
int
i
=
0
;
i
<
x
->
dims
().
size
();
i
++
)
{
dim_vec
.
push_back
(
i
);
}
attr_input
=
{{
"axes"
,
dim_vec
},
{
"keep_dims"
,
keep_dim
}};
}
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
if
(
x
->
type
()
==
framework
::
proto
::
VarType
::
INT64
)
{
auto
op_func
=
[](
const
std
::
vector
<
Tensor
>&
inputs
,
const
std
::
vector
<
Tensor
>&
outputs
,
const
NPUAttributeMap
&
attrs
,
const
platform
::
NPUDeviceContext
&
dev_ctx
)
{
const
auto
&
runner
=
NpuOpRunner
(
"ReduceMinD"
,
{
inputs
[
0
]},
{
outputs
[
0
]},
attrs
);
runner
.
Run
(
dev_ctx
.
stream
());
};
NpuOpRunner
::
TypeAdapter
({
*
x
},
{
cast_out
},
attr_input
,
dev_ctx
,
op_func
,
{
framework
::
proto
::
VarType
::
INT32
},
{
framework
::
proto
::
VarType
::
INT32
});
}
else
{
const
auto
&
runner
=
NpuOpRunner
(
"ReduceMinD"
,
{
*
x
},
{
cast_out
},
attr_input
);
runner
.
Run
(
dev_ctx
.
stream
());
}
if
(
x
->
type
()
!=
cast_out_dtype
)
{
auto
dst_dtype
=
ConvertToNpuDtype
(
cast_out_dtype
);
const
auto
&
runner_cast
=
NpuOpRunner
(
"Cast"
,
{
cast_out
},
{
*
out
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast
.
Run
(
dev_ctx
.
stream
());
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
reduce_min
,
ops
::
ReduceMinNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
ReduceMinNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
,
#ifdef PADDLE_WITH_ASCEND_INT64
ops
::
ReduceMinNPUKernel
<
plat
::
NPUDeviceContext
,
int64_t
>
,
#endif
ops
::
ReduceMinNPUKernel
<
plat
::
NPUDeviceContext
,
int
>
);
This diff is collapsed.
Click to expand it.
python/paddle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py
0 → 100644
浏览文件 @
2b8b16d7
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
paddle
.
enable_static
()
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestNPUReduceMinOp
(
OpTest
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpMultiAxises
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceAll
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
()}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_bool
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
BOOL
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
bool
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_int16
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT16
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
int16
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_int32
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
int32
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_int64
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
int64
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp16
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP16
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float16
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp32
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float32
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp64
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float64
)
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp32_2
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpInt64
(
TestNPUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
if
__name__
==
'__main__'
:
unittest
.
main
()
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录
新手
引导
客服
返回
顶部