未验证 提交 2b8b16d7 编写于 作者: F furnace 提交者: GitHub

[NPU] add reduce_min (#39019)

[NPU] add reduce_min
上级 35b03e1c
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ReduceMinNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto dims = ctx.Attr<std::vector<int>>("dim");
bool keep_dim = ctx.Attr<bool>("keep_dim");
bool reduce_all = ctx.Attr<bool>("reduce_all");
int out_dtype = ctx.Attr<int>("out_dtype");
auto place = ctx.GetPlace();
framework::Tensor cast_out(x->type());
cast_out.Resize(out->dims());
cast_out.mutable_data<T>(place);
auto cast_out_dtype = x->type();
if (out_dtype != -1) {
cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
}
if (x->type() != cast_out_dtype) {
if (cast_out_dtype == framework::proto::VarType::FP32) {
out->mutable_data<float>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP16) {
out->mutable_data<paddle::platform::float16>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT16) {
out->mutable_data<int16_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT32) {
out->mutable_data<int32_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT64) {
out->mutable_data<int64_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP64) {
out->mutable_data<double>(place);
} else if (cast_out_dtype == framework::proto::VarType::BOOL) {
out->mutable_data<bool>(place);
}
} else {
out->ShareDataWith(cast_out);
}
framework::NPUAttributeMap attr_input = {{"axes", dims},
{"keep_dims", keep_dim}};
if (reduce_all) {
std::vector<int> dim_vec;
for (int i = 0; i < x->dims().size(); i++) {
dim_vec.push_back(i);
}
attr_input = {{"axes", dim_vec}, {"keep_dims", keep_dim}};
}
const auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
if (x->type() == framework::proto::VarType::INT64) {
auto op_func = [](const std::vector<Tensor>& inputs,
const std::vector<Tensor>& outputs,
const NPUAttributeMap& attrs,
const platform::NPUDeviceContext& dev_ctx) {
const auto& runner =
NpuOpRunner("ReduceMinD", {inputs[0]}, {outputs[0]}, attrs);
runner.Run(dev_ctx.stream());
};
NpuOpRunner::TypeAdapter({*x}, {cast_out}, attr_input, dev_ctx, op_func,
{framework::proto::VarType::INT32},
{framework::proto::VarType::INT32});
} else {
const auto& runner =
NpuOpRunner("ReduceMinD", {*x}, {cast_out}, attr_input);
runner.Run(dev_ctx.stream());
}
if (x->type() != cast_out_dtype) {
auto dst_dtype = ConvertToNpuDtype(cast_out_dtype);
const auto& runner_cast =
NpuOpRunner("Cast", {cast_out}, {*out},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast.Run(dev_ctx.stream());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
reduce_min, ops::ReduceMinNPUKernel<plat::NPUDeviceContext, float>,
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, plat::float16>,
#ifdef PADDLE_WITH_ASCEND_INT64
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, int64_t>,
#endif
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, int>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import convert_np_dtype_to_dtype_
paddle.enable_static()
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestNPUReduceMinOp(OpTest):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [-1]}
self.outputs = {
'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
}
def test_check_output(self):
self.check_output_with_place(self.place)
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpMultiAxises(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [-2, -1]}
self.outputs = {
'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceAll(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].min()}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_bool(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.BOOL)
}
self.outputs = {
'Out':
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.bool)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_int16(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT16)
}
self.outputs = {
'Out':
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int16)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_int32(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT32)
}
self.outputs = {
'Out':
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int32)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_int64(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT64)
}
self.outputs = {
'Out':
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int64)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_fp16(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP16)
}
self.outputs = {
'Out': self.inputs['X'].min(
axis=tuple(self.attrs['dim'])).astype(np.float16)
}
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-3)
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_fp32(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP32)
}
self.outputs = {
'Out': self.inputs['X'].min(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_fp64(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP64)
}
self.outputs = {
'Out': self.inputs['X'].min(
axis=tuple(self.attrs['dim'])).astype(np.float64)
}
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpWithOutDtype_fp32_2(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP32)
}
self.outputs = {
'Out': self.inputs['X'].min(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
def init_dtype(self):
self.dtype = np.float16
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMinOpInt64(TestNPUReduceMinOp):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT64)
}
self.outputs = {
'Out': self.inputs['X'].min(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
def init_dtype(self):
self.dtype = np.int64
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部