未验证 提交 2b88057f 编写于 作者: L Li Min 提交者: GitHub

Refactor dropout cuda impl for code reuse. (#35621)

上级 e26a2504
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h"
namespace paddle {
namespace operators {
template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob, const T* src,
MaskType* mask, T* dst,
bool is_upscale_in_train, uint64_t increment) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif
MaskType mask_val;
T dst_val;
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (; idx < n; idx += blockDim.x * gridDim.x) {
T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
if (hiprand_uniform(&state) < dropout_prob) {
#else
if (curand_uniform(&state) < dropout_prob) {
#endif
mask_val = 0;
dst_val = 0;
} else {
mask_val = 1;
dst_val = is_upscale_in_train ? src_val * factor : src_val;
}
mask[idx] = mask_val;
dst[idx] = dst_val;
}
}
template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob,
const T* src, MaskType* mask, T* dst,
bool is_upscale_in_train,
uint64_t increment) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
#ifdef PADDLE_WITH_HIP
int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
LoadT src_val;
platform::Load<T, VecSize>(&src[i], &src_val);
#ifdef PADDLE_WITH_HIP
float4 rand = hiprand_uniform4(&state);
#else
float4 rand = curand_uniform4(&state);
#endif
LoadT dst_val;
MaskLoadT mask_val;
#pragma unroll
for (int j = 0; j < VecSize; j++) {
if ((&rand.x)[j] < dropout_prob) {
dst_val[j] = 0;
mask_val[j] = 0;
} else {
dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
mask_val[j] = 1;
}
}
platform::Store<T, VecSize>(dst_val, &dst[i]);
platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
}
}
template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
const T factor, const int64_t size,
T* dx) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
LoadT dout_val;
platform::Load<T, VecSize>(&dout[i], &dout_val);
MaskLoadT mask_val;
platform::Load<MaskType, VecSize>(&mask[i], &mask_val);
LoadT dx_val;
#pragma unroll
for (int j = 0; j < VecSize; j++) {
dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
}
platform::Store<T, VecSize>(dx_val, &dx[i]);
}
}
template <typename T>
void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
bool is_test,
const std::string dropout_implementation,
float dropout_prob, bool upscale_in_train,
bool is_fix_seed, int seed_val, const Tensor& x,
const Tensor* seed, Tensor* mask, Tensor* y) {
auto& place = *dev_ctx.eigen_device();
if (!is_test) {
int64_t x_numel = x.numel();
auto stream = dev_ctx.stream();
auto* mask_data = mask->data<uint8_t>();
size_t size = framework::product(mask->dims());
auto* x_data = x.data<T>();
auto* y_data = y->data<T>();
if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
return;
}
platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, size);
// increment is used to set the args(offset) of curand_init, which defines
// offset in subsequence.
// The detail:
// https://docs.nvidia.com/cuda/curand/device-api-overview.html
// Increment should be at least the number of curand() random numbers used
// in each thread to avoid the random number generated this time being the
// same as the previous calls.
uint64_t seed_data;
uint64_t increment;
int vec_size = platform::GetVectorizedSize<T>(x_data);
auto offset = ((x_numel - 1) / (config.block_per_grid.x *
config.thread_per_block.x * vec_size) +
1) *
vec_size;
int device_id =
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()).GetDeviceId();
auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
if ((seed) && platform::is_gpu_place(seed->place())) {
framework::Tensor seed_cpu_tensor;
TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
increment = offset;
} else if (gen_cuda->GetIsInitPy() && (!is_fix_seed)) {
auto seed_offset = gen_cuda->IncrementOffset(offset);
seed_data = seed_offset.first;
increment = seed_offset.second;
} else {
if (seed) {
seed_data = *(seed->data<int>());
} else {
std::random_device rnd;
seed_data = is_fix_seed ? seed_val : rnd();
}
increment = offset;
}
#ifdef __HIPCC__
if (vec_size == 4 && size % 4 == 0) {
hipLaunchKernelGGL(
HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
config.block_per_grid, config.thread_per_block, 0, stream, size,
seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train,
increment);
} else {
hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
config.block_per_grid, config.thread_per_block, 0,
stream, size, seed_data, dropout_prob, x_data,
mask_data, y_data, upscale_in_train, increment);
}
#else
if (vec_size == 4 && size % 4 == 0) {
VectorizedRandomGenerator<
T, uint8_t,
4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
size, seed_data, dropout_prob, x_data, mask_data, y_data,
upscale_in_train, increment);
} else {
RandomGenerator<T, uint8_t><<<config.block_per_grid,
config.thread_per_block, 0, stream>>>(
size, seed_data, dropout_prob, x_data, mask_data, y_data,
upscale_in_train, increment);
}
#endif
} else {
auto X = EigenMatrix<T>::Reshape(x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
if (upscale_in_train) {
Y.device(place) = X;
} else {
Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
}
}
}
template <typename T>
void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
const std::string dropout_implementation,
float dropout_prob, const Tensor& grad_y,
const Tensor& mask, int64_t size,
Tensor* grad_x) {
auto M = EigenVector<uint8_t>::Flatten(mask);
auto dX = EigenVector<T>::Flatten(*grad_x);
auto dY = EigenVector<T>::Flatten(grad_y);
auto& place = *dev_ctx.eigen_device();
if (dropout_implementation == "upscale_in_train") {
if (dropout_prob == 1.0f) {
dX.device(place) = static_cast<T>(0) * dY;
} else {
int vec_size = platform::GetVectorizedSize<T>(grad_y.data<T>());
if (vec_size == 4 && size % 4 == 0) {
auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
auto stream = dev_ctx.stream();
platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, size);
DropoutGradCUDAKernel<
T, uint8_t,
4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
grad_y.data<T>(), mask.data<uint8_t>(), factor, size,
grad_x->data<T>());
} else {
dX.device(place) =
dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
}
}
} else {
dX.device(place) = dY * M.cast<T>();
}
}
} // namespace operators
} // namespace paddle
...@@ -12,113 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,113 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <algorithm>
#include <string> #include <string>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dropout_impl.cu.h"
#include "paddle/fluid/operators/dropout_op.h" #include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob, const T* src,
MaskType* mask, T* dst,
bool is_upscale_in_train, uint64_t increment) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif
MaskType mask_val;
T dst_val;
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (; idx < n; idx += blockDim.x * gridDim.x) {
T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
if (hiprand_uniform(&state) < dropout_prob) {
#else
if (curand_uniform(&state) < dropout_prob) {
#endif
mask_val = 0;
dst_val = 0;
} else {
mask_val = 1;
dst_val = is_upscale_in_train ? src_val * factor : src_val;
}
mask[idx] = mask_val;
dst[idx] = dst_val;
}
}
template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob,
const T* src, MaskType* mask, T* dst,
bool is_upscale_in_train,
uint64_t increment) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
#ifdef PADDLE_WITH_HIP
int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
LoadT src_val;
platform::Load<T, VecSize>(&src[i], &src_val);
#ifdef PADDLE_WITH_HIP
float4 rand = hiprand_uniform4(&state);
#else
float4 rand = curand_uniform4(&state);
#endif
LoadT dst_val;
MaskLoadT mask_val;
#pragma unroll
for (int j = 0; j < VecSize; j++) {
if ((&rand.x)[j] < dropout_prob) {
dst_val[j] = 0;
mask_val[j] = 0;
} else {
dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
mask_val[j] = 1;
}
}
platform::Store<T, VecSize>(dst_val, &dst[i]);
platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
}
}
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT. // It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to // Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random. // implement uniform random.
...@@ -137,109 +40,41 @@ class GPUDropoutKernel : public framework::OpKernel<T> { ...@@ -137,109 +40,41 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
context.Attr<std::string>("dropout_implementation"); context.Attr<std::string>("dropout_implementation");
bool upscale_in_train = (dropout_implementation == "upscale_in_train"); bool upscale_in_train = (dropout_implementation == "upscale_in_train");
auto& place = *context.template device_context<Place>().eigen_device(); bool is_test = context.Attr<bool>("is_test");
if (!context.Attr<bool>("is_test")) {
int64_t x_numel = x->numel();
auto stream = context.cuda_device_context().stream();
auto& dev_ctx = context.cuda_device_context();
auto* mask = context.Output<Tensor>("Mask"); auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace()); mask->mutable_data<uint8_t>(context.GetPlace());
size_t size = framework::product(mask->dims());
auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(
mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
return;
}
const auto& dev_ctx = context.cuda_device_context();
platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, size);
// increment is used to set the args(offset) of curand_init, which defines bool is_fix_seed = context.Attr<bool>("fix_seed");
// offset in subsequence. int seed_val = context.Attr<int>("seed");
// The detail: DropoutFwGPUKernelDriver<T>(dev_ctx, is_test, dropout_implementation,
// https://docs.nvidia.com/cuda/curand/device-api-overview.html dropout_prob, upscale_in_train, is_fix_seed,
// Increment should be at least the number of curand() random numbers used seed_val, *x, seed, mask, y);
// in each thread to avoid the random number generated this time being the
// same as the previous calls.
uint64_t seed_data;
uint64_t increment;
int vec_size = platform::GetVectorizedSize<T>(x_data);
auto offset = ((x_numel - 1) / (config.block_per_grid.x *
config.thread_per_block.x * vec_size) +
1) *
vec_size;
int device_id = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace())
.GetDeviceId();
auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
if (seed && platform::is_gpu_place(seed->place())) {
framework::Tensor seed_cpu_tensor;
TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
increment = offset;
} else if (gen_cuda->GetIsInitPy() && (!context.Attr<bool>("fix_seed"))) {
auto seed_offset = gen_cuda->IncrementOffset(offset);
seed_data = seed_offset.first;
increment = seed_offset.second;
} else {
if (seed) {
seed_data = *(seed->data<int>());
} else {
std::random_device rnd;
seed_data = context.Attr<bool>("fix_seed") ? context.Attr<int>("seed")
: rnd();
}
increment = offset;
} }
};
#ifdef __HIPCC__ template <typename DeviceContext, typename T>
if (vec_size == 4 && size % 4 == 0) { class GPUDropoutGradKernel : public framework::OpKernel<T> {
hipLaunchKernelGGL( public:
HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>), void Compute(const framework::ExecutionContext& context) const override {
config.block_per_grid, config.thread_per_block, 0, stream, size, PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
seed_data, dropout_prob, x_data, mask_data, y_data, platform::errors::PreconditionNotMet(
upscale_in_train, increment); "GradOp is only callable when is_test is false"));
} else {
hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>), auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
config.block_per_grid, config.thread_per_block, 0, auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
stream, size, seed_data, dropout_prob, x_data, auto* mask = context.Input<Tensor>("Mask");
mask_data, y_data, upscale_in_train, increment); grad_x->mutable_data<T>(context.GetPlace());
} auto size = grad_x->numel();
#else auto& dropout_implementation =
if (vec_size == 4 && size % 4 == 0) { context.Attr<std::string>("dropout_implementation");
VectorizedRandomGenerator< float dropout_prob = context.Attr<float>("dropout_prob");
T, uint8_t,
4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>( auto& dev_ctx =
size, seed_data, dropout_prob, x_data, mask_data, y_data, context.template device_context<platform::CUDADeviceContext>();
upscale_in_train, increment); DropoutGradGPUKernelDriver<T>(dev_ctx, dropout_implementation, dropout_prob,
} else { *grad_y, *mask, size, grad_x);
RandomGenerator<T, uint8_t><<<config.block_per_grid,
config.thread_per_block, 0, stream>>>(
size, seed_data, dropout_prob, x_data, mask_data, y_data,
upscale_in_train, increment);
}
#endif
} else {
auto X = EigenMatrix<T>::Reshape(*x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
if (upscale_in_train) {
Y.device(place) = X;
} else {
Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
}
}
} }
}; };
...@@ -253,6 +88,6 @@ REGISTER_OP_CUDA_KERNEL( ...@@ -253,6 +88,6 @@ REGISTER_OP_CUDA_KERNEL(
ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>, ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>,
ops::GPUDropoutKernel<plat::CUDADeviceContext, double>); ops::GPUDropoutKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
dropout_grad, ops::DropoutGradKernel<plat::CUDADeviceContext, float>, dropout_grad, ops::GPUDropoutGradKernel<plat::CUDADeviceContext, float>,
ops::DropoutGradKernel<plat::CUDADeviceContext, plat::float16>, ops::GPUDropoutGradKernel<plat::CUDADeviceContext, plat::float16>,
ops::DropoutGradKernel<plat::CUDADeviceContext, double>); ops::GPUDropoutGradKernel<plat::CUDADeviceContext, double>);
...@@ -21,40 +21,10 @@ limitations under the License. */ ...@@ -21,40 +21,10 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
const T factor, const int64_t size,
T* dx) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
LoadT dout_val;
platform::Load<T, VecSize>(&dout[i], &dout_val);
MaskLoadT mask_val;
platform::Load<MaskType, VecSize>(&mask[i], &mask_val);
LoadT dx_val;
#pragma unroll
for (int j = 0; j < VecSize; j++) {
dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
}
platform::Store<T, VecSize>(dx_val, &dx[i]);
}
}
#endif
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor, template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
...@@ -137,7 +107,6 @@ class CPUDropoutKernel : public framework::OpKernel<T> { ...@@ -137,7 +107,6 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
} }
} }
}; };
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class DropoutGradKernel : public framework::OpKernel<T> { class DropoutGradKernel : public framework::OpKernel<T> {
public: public:
...@@ -146,7 +115,6 @@ class DropoutGradKernel : public framework::OpKernel<T> { ...@@ -146,7 +115,6 @@ class DropoutGradKernel : public framework::OpKernel<T> {
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out")); auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = context.Input<Tensor>("Mask"); auto* mask = context.Input<Tensor>("Mask");
grad_x->mutable_data<T>(context.GetPlace()); grad_x->mutable_data<T>(context.GetPlace());
auto size = grad_x->numel();
auto dX = EigenVector<T>::Flatten(*grad_x); auto dX = EigenVector<T>::Flatten(*grad_x);
auto dY = EigenVector<T>::Flatten(*grad_y); auto dY = EigenVector<T>::Flatten(*grad_y);
...@@ -168,25 +136,10 @@ class DropoutGradKernel : public framework::OpKernel<T> { ...@@ -168,25 +136,10 @@ class DropoutGradKernel : public framework::OpKernel<T> {
float dropout_prob = context.Attr<float>("dropout_prob"); float dropout_prob = context.Attr<float>("dropout_prob");
if (dropout_prob == 1.0f) { if (dropout_prob == 1.0f) {
dX.device(place) = static_cast<T>(0) * dY; dX.device(place) = static_cast<T>(0) * dY;
} else {
int vec_size = platform::GetVectorizedSize<T>(grad_y->data<T>());
if (platform::is_gpu_place(context.GetPlace()) && vec_size == 4 &&
size % 4 == 0) {
#if defined(__NVCC__) || defined(__HIPCC__)
auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
auto stream = context.cuda_device_context().stream();
platform::GpuLaunchConfig config = platform::GetGpuLaunchConfig1D(
context.cuda_device_context(), size);
DropoutGradCUDAKernel<T, uint8_t, 4><<<
config.block_per_grid, config.thread_per_block, 0, stream>>>(
grad_y->data<T>(), mask->data<uint8_t>(), factor, size,
grad_x->data<T>());
#endif
} else { } else {
dX.device(place) = dX.device(place) =
dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob); dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
} }
}
} else { } else {
dX.device(place) = dY * M.cast<T>(); dX.device(place) = dY * M.cast<T>();
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册