Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
29cacee4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29cacee4
编写于
9月 10, 2021
作者:
B
baoachun
提交者:
GitHub
9月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add elementwise trt converter test cases (#35552)
上级
0b6623d7
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
370 addition
and
3 deletion
+370
-3
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
...ddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
+3
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+362
-0
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
.../tests/unittests/ir/inference/trt_layer_auto_scan_test.py
+5
-3
未找到文件。
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
浏览文件 @
29cacee4
...
@@ -95,6 +95,9 @@ class AutoScanTest(unittest.TestCase):
...
@@ -95,6 +95,9 @@ class AutoScanTest(unittest.TestCase):
first
=
tensors
[
0
]
first
=
tensors
[
0
]
for
group
in
tensors
[
1
:]:
for
group
in
tensors
[
1
:]:
for
key
,
arr
in
group
.
items
():
for
key
,
arr
in
group
.
items
():
self
.
assertTrue
(
first
[
key
].
shape
==
arr
.
shape
,
"The output shape of GPU and TensorRT are not equal."
)
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
first
[
key
],
arr
,
atol
=
threshold
),
first
[
key
],
arr
,
atol
=
threshold
),
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
0 → 100644
浏览文件 @
29cacee4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertElementwiseTest_one_input
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_weight
():
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
64
,
32
],
[
batch
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
len
(
shape
)
-
1
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Y"
:
[
"weight"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
16
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
,
16
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_without_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
4
],
[
4
,
32
],
[
2
,
64
,
32
],
[
1
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
0
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
],
"input_data2"
:
[
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
256
],
"input_data2"
:
[
128
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
16
],
"input_data2"
:
[
32
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
],
"input_data2"
:
[
1
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
256
],
"input_data2"
:
[
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
32
,
64
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
256
,
128
],
"input_data2"
:
[
128
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
16
],
"input_data2"
:
[
2
,
64
,
64
]
}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
8
,
32
,
64
,
64
],
"input_data2"
:
[
8
,
128
,
64
,
128
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
32
,
16
],
"input_data2"
:
[
2
,
64
,
32
,
32
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_with_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
or
len
(
inputs
[
'input_data2'
]
.
shape
)
==
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
input1_shape_list
=
[[
4
,
32
],
[
2
,
4
,
32
],
[
4
,
2
,
4
,
32
]]
input2_shape1_list
=
[[
32
],
[
4
,
32
],
[
2
,
4
,
32
]]
input2_shape2_list
=
[[
1
,
32
],
[
1
,
1
,
32
],
[
1
,
1
,
1
,
32
]]
input2_shape3_list
=
[[
1
,
32
],
[
1
,
4
,
32
],
[
4
,
32
]]
input2_shape_list
=
[
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
]
axis1_list
=
[[
-
1
],
[
1
,
-
1
],
[
1
,
-
1
]]
axis2_list
=
[[
-
1
],
[
-
1
],
[
-
1
]]
axis3_list
=
[[
-
1
],
[
-
1
],
[
2
,
-
1
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
]
for
i
in
range
(
3
):
input1_shape
=
input1_shape_list
[
i
]
for
j
in
range
(
3
):
input2_shape
=
input2_shape_list
[
j
][
i
]
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
axis_list
[
j
][
i
]:
self
.
dims1
=
len
(
input1_shape
)
self
.
dims2
=
len
(
input2_shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input1_shape
)),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input2_shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
max_shape
=
[[
128
],
[
128
,
128
],
[
128
,
128
,
128
],
[
128
,
128
,
128
,
128
]]
min_shape
=
[[
1
],
[
1
,
1
],
[
1
,
1
,
1
],
[
1
,
1
,
1
,
1
]]
opt_shape
=
[[
32
],
[
32
,
32
],
[
32
,
32
,
32
],
[
32
,
32
,
32
,
32
]]
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
min_shape
[
self
.
dims1
-
1
],
"input_data2"
:
min_shape
[
self
.
dims2
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
max_shape
[
self
.
dims1
-
1
],
"input_data2"
:
max_shape
[
self
.
dims2
-
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
opt_shape
[
self
.
dims1
-
1
],
"input_data2"
:
opt_shape
[
self
.
dims2
-
1
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
浏览文件 @
29cacee4
...
@@ -99,6 +99,9 @@ class TrtLayerAutoScanTest(AutoScanTest):
...
@@ -99,6 +99,9 @@ class TrtLayerAutoScanTest(AutoScanTest):
tensor
:
Dict
[
str
,
np
.
array
],
tensor
:
Dict
[
str
,
np
.
array
],
baseline
:
Dict
[
str
,
np
.
array
]):
baseline
:
Dict
[
str
,
np
.
array
]):
for
key
,
arr
in
tensor
.
items
():
for
key
,
arr
in
tensor
.
items
():
self
.
assertTrue
(
baseline
[
key
].
shape
==
arr
.
shape
,
"The output shape of GPU and TensorRT are not equal."
)
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
baseline
[
key
],
arr
,
atol
=
threshold
),
baseline
[
key
],
arr
,
atol
=
threshold
),
...
@@ -219,6 +222,8 @@ class TrtLayerAutoScanTest(AutoScanTest):
...
@@ -219,6 +222,8 @@ class TrtLayerAutoScanTest(AutoScanTest):
self
.
run_test_config
(
model
,
params
,
prog_config
,
self
.
run_test_config
(
model
,
params
,
prog_config
,
pred_config
,
feed_data
))
pred_config
,
feed_data
))
self
.
assert_tensors_near
(
threshold
,
results
[
-
1
],
results
[
0
])
self
.
assert_tensors_near
(
threshold
,
results
[
-
1
],
results
[
0
])
if
not
skip_flag
:
self
.
assert_op_size
(
nodes_num
[
0
],
nodes_num
[
1
])
except
Exception
as
e
:
except
Exception
as
e
:
self
.
fail_log
(
self
.
fail_log
(
str
(
prog_config
)
+
' vs '
+
self
.
inference_config_str
(
str
(
prog_config
)
+
' vs '
+
self
.
inference_config_str
(
...
@@ -227,9 +232,6 @@ class TrtLayerAutoScanTest(AutoScanTest):
...
@@ -227,9 +232,6 @@ class TrtLayerAutoScanTest(AutoScanTest):
status
=
False
status
=
False
continue
continue
if
not
skip_flag
:
self
.
assert_op_size
(
nodes_num
[
0
],
nodes_num
[
1
])
self
.
success_log
(
'RUN '
+
str
(
prog_config
)
+
' vs '
+
self
.
success_log
(
'RUN '
+
str
(
prog_config
)
+
' vs '
+
self
.
inference_config_str
(
pred_config
))
self
.
inference_config_str
(
pred_config
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录