提交 294d5944 编写于 作者: H Haihao Shen 提交者: Tao Luo

Enable performance measurement in INT8 calibration unit test (#15560)

* Enable performance measurement in INT8 calibration unit test
上级 c4b9eac1
......@@ -19,10 +19,8 @@ import sys
import random
import paddle
import paddle.fluid as fluid
import argparse
import functools
import contextlib
import paddle.fluid.profiler as profiler
from paddle.dataset.common import download
from PIL import Image, ImageEnhance
import math
......@@ -43,7 +41,7 @@ img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
# TODO(guomingz): Remove duplicated code from line 45 ~ line 114
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
......@@ -123,16 +121,37 @@ class TestCalibrationForResnet50(unittest.TestCase):
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
self.int8_download)
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
data_md5 = '1b6c1c434172cca1bf9ba1e4d7a3157d'
self.data_cache_folder = self.download_data(data_url, data_md5, "data")
data_urls = []
data_md5s = []
self.data_cache_folder = ''
if os.environ.get('DATASET') == 'full':
data_urls.append(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
)
data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
data_urls.append(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
)
data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
self.data_cache_folder = self.download_data(data_urls, data_md5s,
"full_data", False)
else:
data_urls.append(
'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
)
data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
self.data_cache_folder = self.download_data(data_urls, data_md5s,
"small_data", False)
# reader/decorator.py requires the relative path to the data folder
cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
self.data_cache_folder)
os.system(cmd)
self.iterations = 50
self.batch_size = 1
self.sample_iterations = 50
self.infer_iterations = 50000 if os.environ.get(
'DATASET') == 'full' else 50
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
......@@ -140,20 +159,44 @@ class TestCalibrationForResnet50(unittest.TestCase):
zip_path)
os.system(cmd)
def download_data(self, data_url, data_md5, folder_name):
download(data_url, self.int8_download, data_md5)
def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
data_cache_folder = os.path.join(self.cache_folder, folder_name)
file_name = data_url.split('/')[-1]
zip_path = ''
if os.environ.get('DATASET') == 'full':
file_names = []
for i in range(0, len(data_urls)):
download(data_urls[i], self.int8_download, data_md5s[i])
file_names.append(data_urls[i].split('/')[-1])
zip_path = os.path.join(self.cache_folder,
'full_imagenet_val.tar.gz')
if not os.path.exists(zip_path):
cat_command = 'cat'
for file_name in file_names:
cat_command += ' ' + os.path.join(self.cache_folder,
file_name)
cat_command += ' > ' + zip_path
os.system(cat_command)
if os.environ.get('DATASET') != 'full' or is_model:
download(data_urls[0], self.int8_download, data_md5s[0])
file_name = data_urls[0].split('/')[-1]
zip_path = os.path.join(self.cache_folder, file_name)
print('Data is downloaded at {0}').format(zip_path)
self.cache_unzipping(data_cache_folder, zip_path)
return data_cache_folder
def download_resnet50_model(self):
def download_model(self):
# resnet50 fp32 data
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
data_md5 = '4a5194524823d9b76da6e738e1367881'
self.model_cache_folder = self.download_data(data_url, data_md5,
data_urls = [
'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s = ['4a5194524823d9b76da6e738e1367881']
self.model_cache_folder = self.download_data(data_urls, data_md5s,
"resnet50_fp32")
self.model = "ResNet-50"
self.algo = "direct"
def run_program(self, model_path, generate_int8=False, algo='direct'):
image_shape = [3, 224, 224]
......@@ -169,17 +212,17 @@ class TestCalibrationForResnet50(unittest.TestCase):
t = fluid.transpiler.InferenceTranspiler()
t.transpile(infer_program, fluid.CPUPlace())
val_reader = paddle.batch(val(), batch_size=1)
val_reader = paddle.batch(val(), self.batch_size)
iterations = self.infer_iterations
if generate_int8:
int8_model = os.path.join(os.getcwd(), "calibration_out")
iterations = self.sample_iterations
if os.path.exists(int8_model):
os.system("rm -rf " + int8_model)
os.system("mkdir " + int8_model)
print("Start calibration ...")
calibrator = int8_utility.Calibrator(
program=infer_program,
pretrained_model=model_path,
......@@ -191,6 +234,7 @@ class TestCalibrationForResnet50(unittest.TestCase):
test_info = []
cnt = 0
periods = []
for batch_id, data in enumerate(val_reader()):
image = np.array(
[x[0].reshape(image_shape) for x in data]).astype("float32")
......@@ -202,20 +246,27 @@ class TestCalibrationForResnet50(unittest.TestCase):
if op.has_attr("use_mkldnn"):
op._set_attr("use_mkldnn", True)
t1 = time.time()
_, acc1, _ = exe.run(
running_program,
feed={feed_dict[0]: image,
feed_dict[1]: label},
fetch_list=fetch_targets)
t2 = time.time()
period = t2 - t1
periods.append(period)
if generate_int8:
calibrator.sample_data()
test_info.append(np.mean(acc1) * len(data))
cnt += len(data)
if batch_id != self.iterations - 1:
continue
if (batch_id + 1) % 100 == 0:
print("{0} images,".format(batch_id + 1))
sys.stdout.flush()
if (batch_id + 1) == iterations:
break
if generate_int8:
......@@ -225,32 +276,49 @@ class TestCalibrationForResnet50(unittest.TestCase):
"Calibration is done and the corresponding files are generated at {}".
format(os.path.abspath("calibration_out")))
else:
return np.sum(test_info) / cnt
throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)
def test_calibration(self):
self.download_resnet50_model()
fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
self.run_program(self.model_cache_folder + "/model", True)
int8_acc1 = self.run_program("calibration_out")
self.download_model()
print("Start FP32 inference for {0} on {1} images ...").format(
self.model, self.infer_iterations)
(fp32_throughput, fp32_latency,
fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
print("Start INT8 calibration for {0} on {1} images ...").format(
self.model, self.sample_iterations)
self.run_program(
self.model_cache_folder + "/model", True, algo=self.algo)
print("Start INT8 inference for {0} on {1} images ...").format(
self.model, self.infer_iterations)
(int8_throughput, int8_latency,
int8_acc1) = self.run_program("calibration_out")
delta_value = np.abs(fp32_acc1 - int8_acc1)
self.assertLess(delta_value, 0.01)
print(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, fp32_throughput, fp32_latency,
fp32_acc1))
print(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, int8_throughput, int8_latency,
int8_acc1))
sys.stdout.flush()
class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
def download_mobilenetv1_model(self):
def download_model(self):
# mobilenetv1 fp32 data
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
data_md5 = '13892b0716d26443a8cdea15b3c6438b'
self.model_cache_folder = self.download_data(data_url, data_md5,
data_urls = [
'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
self.model_cache_folder = self.download_data(data_urls, data_md5s,
"mobilenetv1_fp32")
def test_calibration(self):
self.download_mobilenetv1_model()
fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
self.run_program(self.model_cache_folder + "/model", True, algo='KL')
int8_acc1 = self.run_program("calibration_out")
delta_value = np.abs(fp32_acc1 - int8_acc1)
self.assertLess(delta_value, 0.01)
self.model = "MobileNet-V1"
self.algo = "KL"
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册