Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
24a33bed
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24a33bed
编写于
9月 27, 2020
作者:
C
Chen Weihang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
replace config by kwargs
上级
6b727e08
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
237 addition
and
496 deletion
+237
-496
python/paddle/__init__.py
python/paddle/__init__.py
+0
-1
python/paddle/fluid/dygraph/checkpoint.py
python/paddle/fluid/dygraph/checkpoint.py
+36
-37
python/paddle/fluid/dygraph/jit.py
python/paddle/fluid/dygraph/jit.py
+92
-355
python/paddle/fluid/dygraph/static_runner.py
python/paddle/fluid/dygraph/static_runner.py
+2
-2
python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py
...addle/fluid/tests/unittests/dygraph_to_static/test_lac.py
+1
-3
python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py
...dle/fluid/tests/unittests/dygraph_to_static/test_mnist.py
+1
-3
python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py
.../unittests/dygraph_to_static/test_save_inference_model.py
+3
-8
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
...fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
+4
-4
python/paddle/fluid/tests/unittests/test_directory_migration.py
.../paddle/fluid/tests/unittests/test_directory_migration.py
+9
-12
python/paddle/fluid/tests/unittests/test_jit_save_load.py
python/paddle/fluid/tests/unittests/test_jit_save_load.py
+29
-47
python/paddle/fluid/tests/unittests/test_load_state_dict_from_old_format.py
...d/tests/unittests/test_load_state_dict_from_old_format.py
+18
-14
python/paddle/framework/__init__.py
python/paddle/framework/__init__.py
+2
-3
python/paddle/framework/io.py
python/paddle/framework/io.py
+40
-7
未找到文件。
python/paddle/__init__.py
浏览文件 @
24a33bed
...
...
@@ -234,7 +234,6 @@ from .framework import grad #DEFINE_ALIAS
from
.framework
import
no_grad
#DEFINE_ALIAS
from
.framework
import
save
#DEFINE_ALIAS
from
.framework
import
load
#DEFINE_ALIAS
from
.framework
import
SaveLoadConfig
#DEFINE_ALIAS
from
.framework
import
DataParallel
#DEFINE_ALIAS
from
.framework
import
NoamDecay
#DEFINE_ALIAS
...
...
python/paddle/fluid/dygraph/checkpoint.py
浏览文件 @
24a33bed
...
...
@@ -24,7 +24,7 @@ from . import learning_rate_scheduler
import
warnings
from
..
import
core
from
.base
import
guard
from
paddle.fluid.dygraph.jit
import
SaveLoadConfig
,
deprecate_save_load_configs
from
paddle.fluid.dygraph.jit
import
_SaveLoadConfig
from
paddle.fluid.dygraph.io
import
_construct_program_holders
,
_construct_params_and_buffers
,
EXTRA_VAR_INFO_FILENAME
__all__
=
[
...
...
@@ -33,35 +33,27 @@ __all__ = [
]
# NOTE(chenweihang): deprecate load_dygraph's argument keep_name_table,
# ensure compatibility when user still use keep_name_table argument
def
deprecate_keep_name_table
(
func
):
@
functools
.
wraps
(
func
)
def
wrapper
(
*
args
,
**
kwargs
):
def
__warn_and_build_configs__
(
keep_name_table
):
warnings
.
warn
(
"The argument `keep_name_table` has deprecated, please use `SaveLoadConfig.keep_name_table`."
,
DeprecationWarning
)
config
=
SaveLoadConfig
()
config
.
keep_name_table
=
keep_name_table
return
config
# deal with arg `keep_name_table`
if
len
(
args
)
>
1
and
isinstance
(
args
[
1
],
bool
):
args
=
list
(
args
)
args
[
1
]
=
__warn_and_build_configs__
(
args
[
1
])
# deal with kwargs
elif
'keep_name_table'
in
kwargs
:
kwargs
[
'config'
]
=
__warn_and_build_configs__
(
kwargs
[
'keep_name_table'
])
kwargs
.
pop
(
'keep_name_table'
)
else
:
# do nothing
pass
def
_parse_load_config
(
configs
):
supported_configs
=
[
'model_filename'
,
'params_filename'
,
'separate_params'
,
'keep_name_table'
]
# input check
for
key
in
configs
:
if
key
not
in
supported_configs
:
raise
ValueError
(
"The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
%
(
key
))
return
func
(
*
args
,
**
kwargs
)
# construct inner config
inner_config
=
_SaveLoadConfig
()
inner_config
.
model_filename
=
configs
.
get
(
'model_filename'
,
None
)
inner_config
.
params_filename
=
configs
.
get
(
'params_filename'
,
None
)
inner_config
.
separate_params
=
configs
.
get
(
'separate_params'
,
None
)
inner_config
.
keep_name_table
=
configs
.
get
(
'keep_name_table'
,
None
)
return
wrapper
return
inner_config
@
dygraph_only
...
...
@@ -135,9 +127,7 @@ def save_dygraph(state_dict, model_path):
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
# @dygraph_only
@
deprecate_save_load_configs
@
deprecate_keep_name_table
def
load_dygraph
(
model_path
,
config
=
None
):
def
load_dygraph
(
model_path
,
**
configs
):
'''
:api_attr: imperative
...
...
@@ -152,10 +142,20 @@ def load_dygraph(model_path, config=None):
Args:
model_path(str) : The file prefix store the state_dict.
(The path should Not contain suffix '.pdparams')
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``jit.save/io.save_inference_model`` formats.
Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) model_filename (string): The filename to load the translated program of target Layer.
Default filename is :code:`__model__` .
(2) params_filename (string): The filename to load all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
If True, each parameter will be loaded from a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
(4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in
loaded state dict. This dict is the debugging information saved when call ``paddle.fluid.save_dygraph`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in ``paddle.fluid.load_dygraph`` result. Default: False.
Returns:
state_dict(dict) : the dict store the state_dict
...
...
@@ -196,8 +196,7 @@ def load_dygraph(model_path, config=None):
opti_file_path
=
model_prefix
+
".pdopt"
# deal with argument `config`
if
config
is
None
:
config
=
SaveLoadConfig
()
config
=
_parse_load_config
(
configs
)
if
os
.
path
.
exists
(
params_file_path
)
or
os
.
path
.
exists
(
opti_file_path
):
# Load state dict by `save_dygraph` save format
...
...
python/paddle/fluid/dygraph/jit.py
浏览文件 @
24a33bed
...
...
@@ -39,7 +39,7 @@ from paddle.fluid.wrapped_decorator import wrap_decorator
__all__
=
[
'TracedLayer'
,
'declarative'
,
'dygraph_to_static_func'
,
'set_code_level'
,
'set_verbosity'
,
'save'
,
'load'
,
'SaveLoadConfig'
'set_verbosity'
,
'save'
,
'load'
]
...
...
@@ -228,73 +228,7 @@ def declarative(function=None, input_spec=None):
return
decorated
class
SaveLoadConfig
(
object
):
"""
The additional configuration options may be used in function
``paddle.jit.save/load`` and ``paddle.load`` .
Examples:
1. Using ``SaveLoadConfig`` when saving model
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
class SimpleNet(nn.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = nn.Linear(in_size, out_size)
@paddle.jit.to_static
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# enable dygraph mode
paddle.disable_static()
# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
out = net(x)
loss = paddle.tensor.mean(out)
loss.backward()
adam.step()
adam.clear_grad()
# use SaveLoadconfig when saving model
model_path = "simplenet.example.model"
config = paddle.SaveLoadConfig()
config.model_filename = "__simplenet__"
paddle.jit.save(
layer=net,
model_path=model_path,
config=config)
2. Using ``SaveLoadConfig`` when loading model
.. code-block:: python
import paddle
# enable dygraph mode
paddle.disable_static()
# use SaveLoadconfig when loading model
model_path = "simplenet.example.model"
config = paddle.SaveLoadConfig()
config.model_filename = "__simplenet__"
infer_net = paddle.jit.load(model_path, config=config)
# inference
x = paddle.randn([4, 8], 'float32')
pred = infer_net(x)
"""
class
_SaveLoadConfig
(
object
):
def
__init__
(
self
):
self
.
_output_spec
=
None
self
.
_model_filename
=
None
...
...
@@ -316,207 +250,53 @@ class SaveLoadConfig(object):
@
property
def
output_spec
(
self
):
"""
Selects the output targets of the saved model ( ``paddle.jit.TranslatedLayer`` ).
By default, all return variables of original Layer's forward function
are kept as the output of the saved TranslatedLayer.
The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
list is not all output variables, the saved model will be pruned according to the
given ``output_spec`` list.
.. note::
The ``output_spec`` is only used when saving model.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
class SimpleNet(nn.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = nn.Linear(in_size, out_size)
@paddle.jit.to_static
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
loss = paddle.tensor.mean(z)
return z, loss
# enable dygraph mode
paddle.disable_static()
# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
out, loss = net(x)
loss.backward()
adam.step()
adam.clear_grad()
# use SaveLoadconfig.output_spec
model_path = "simplenet.example.model.output_spec"
config = paddle.SaveLoadConfig()
config.output_spec = [out]
paddle.jit.save(
layer=net,
model_path=model_path,
config=config)
infer_net = paddle.jit.load(model_path)
x = paddle.randn([4, 8], 'float32')
pred = infer_net(x)
"""
return
self
.
_output_spec
@
output_spec
.
setter
def
output_spec
(
self
,
spec
):
if
spec
is
None
:
return
if
not
isinstance
(
spec
,
list
):
raise
TypeError
(
"The
SaveLoadConfig.output_spec
should be 'list', but received input type is %s."
"The
config `output_spec`
should be 'list', but received input type is %s."
%
type
(
input
))
for
var
in
spec
:
if
not
isinstance
(
var
,
core
.
VarBase
):
raise
TypeError
(
"The element in
SaveLoadConfig.output_spec
list should be 'Variable', but received element's type is %s."
"The element in
config `output_spec`
list should be 'Variable', but received element's type is %s."
%
type
(
var
))
self
.
_output_spec
=
spec
@
property
def
model_filename
(
self
):
"""
The name of file to save the translated program of target Layer.
Default filename is :code:`__model__` .
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
class SimpleNet(nn.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = nn.Linear(in_size, out_size)
@paddle.jit.to_static
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# enable dygraph mode
paddle.disable_static()
# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
out = net(x)
loss = paddle.tensor.mean(out)
loss.backward()
adam.step()
adam.clear_grad()
# saving with configs.model_filename
model_path = "simplenet.example.model.model_filename"
config = paddle.SaveLoadConfig()
config.model_filename = "__simplenet__"
paddle.jit.save(
layer=net,
model_path=model_path,
config=config)
# loading with configs.model_filename
infer_net = paddle.jit.load(model_path, config=config)
x = paddle.randn([4, 8], 'float32')
pred = infer_net(x)
"""
return
self
.
_model_filename
@
model_filename
.
setter
def
model_filename
(
self
,
filename
):
if
filename
is
None
:
return
if
not
isinstance
(
filename
,
six
.
string_types
):
raise
TypeError
(
"The
SaveLoadConfig.model_filename
should be str, but received input's type is %s."
"The
config `model_filename`
should be str, but received input's type is %s."
%
type
(
filename
))
if
len
(
filename
)
==
0
:
raise
ValueError
(
"The SaveLoadConfig.model_filename is empty string."
)
raise
ValueError
(
"The config `model_filename` is empty string."
)
self
.
_model_filename
=
filename
@
property
def
params_filename
(
self
):
"""
The name of file to save all persistable variables in target Layer.
Default file name is :code:`__variables__` .
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
class SimpleNet(nn.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = nn.Linear(in_size, out_size)
@paddle.jit.to_static
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# enable dygraph mode
paddle.disable_static()
# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
out = net(x)
loss = paddle.tensor.mean(out)
loss.backward()
adam.step()
adam.clear_grad()
model_path = "simplenet.example.model.params_filename"
config = paddle.SaveLoadConfig()
config.params_filename = "__params__"
# saving with configs.params_filename
paddle.jit.save(
layer=net,
model_path=model_path,
config=config)
# loading with configs.params_filename
infer_net = paddle.jit.load(model_path, config=config)
x = paddle.randn([4, 8], 'float32')
pred = infer_net(x)
"""
return
self
.
_params_filename
@
params_filename
.
setter
def
params_filename
(
self
,
filename
):
if
filename
is
None
:
return
if
not
isinstance
(
filename
,
six
.
string_types
):
raise
TypeError
(
"The
SaveLoadConfig.params_filename
should be str, but received input's type is %s."
"The
config `params_filename`
should be str, but received input's type is %s."
%
type
(
filename
))
if
len
(
filename
)
==
0
:
raise
ValueError
(
"The SaveLoadConfig.params_filename is empty string."
)
raise
ValueError
(
"The config `params_filename` is empty string."
)
self
.
_params_filename
=
filename
# NOTE: [why not use params_filename=None control params saved separately]
...
...
@@ -527,122 +307,72 @@ class SaveLoadConfig(object):
# separately can makes the concept clearer.
@
property
def
separate_params
(
self
):
"""
Configure whether to save the Layer parameters as separete files.
(In order to be compatible with the behavior of ``paddle.static.save_inference_model`` )
If True, each parameter will be saved to a file separately, the file name is the parameter name,
and the SaveLoadConfig.params_filename configuration will not take effect. Default False.
.. note::
Only used for ``paddle.jit.save`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
class SimpleNet(nn.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = nn.Linear(in_size, out_size)
@paddle.jit.to_static
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# enable dygraph mode
paddle.disable_static()
# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
out = net(x)
loss = paddle.tensor.mean(out)
loss.backward()
adam.step()
adam.clear_grad()
model_path = "simplenet.example.model.separate_params"
config = paddle.SaveLoadConfig()
config.separate_params = True
# saving with configs.separate_params
paddle.jit.save(
layer=net,
model_path=model_path,
config=config)
# [result] the saved model directory contains:
# linear_0.b_0 linear_0.w_0 __model__ __variables.info__
# loading with configs.params_filename
infer_net = paddle.jit.load(model_path, config=config)
x = paddle.randn([4, 8], 'float32')
pred = infer_net(x)
"""
return
self
.
_separate_params
@
separate_params
.
setter
def
separate_params
(
self
,
value
):
if
value
is
None
:
return
None
if
not
isinstance
(
value
,
bool
):
raise
TypeError
(
"The
SaveLoadConfig.separate_params
should be bool value, but received input's type is %s."
"The
config `separate_params`
should be bool value, but received input's type is %s."
%
type
(
value
))
self
.
_separate_params
=
value
@
property
def
keep_name_table
(
self
):
"""
Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
This dict is the debugging information saved when call ``paddle.save`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in ``paddle.load`` result. Default: False.
return
self
.
_keep_name_table
.. note::
Only used for ``paddle.load`` .
@
keep_name_table
.
setter
def
keep_name_table
(
self
,
value
):
if
value
is
None
:
return
if
not
isinstance
(
value
,
bool
):
raise
TypeError
(
"The config `keep_name_table` should be bool value, but received input's type is %s."
%
type
(
value
))
self
.
_keep_name_table
=
value
Examples:
.. code-block:: python
import paddle
def
_parse_save_configs
(
configs
):
supported_configs
=
[
'output_spec'
,
'model_filename'
,
'params_filename'
,
'separate_params'
]
paddle.disable_static()
# input check
for
key
in
configs
:
if
key
not
in
supported_configs
:
raise
ValueError
(
"The additional config (%s) of `paddle.jit.save` is not supported."
%
(
key
))
linear = paddle.nn.Linear(5, 1)
# construct inner config
inner_config
=
_SaveLoadConfig
()
inner_config
.
output_spec
=
configs
.
get
(
'output_spec'
,
None
)
inner_config
.
model_filename
=
configs
.
get
(
'model_filename'
,
None
)
inner_config
.
params_filename
=
configs
.
get
(
'params_filename'
,
None
)
inner_config
.
separate_params
=
configs
.
get
(
'separate_params'
,
None
)
state_dict = linear.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
return
inner_config
config = paddle.SaveLoadConfig()
config.keep_name_table = True
para_state_dict = paddle.load("paddle_dy.pdparams", config)
print(para_state_dict)
# the name_table is 'StructuredToParameterName@@'
# {'bias': array([0.], dtype=float32),
# 'StructuredToParameterName@@':
# {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'},
# 'weight': array([[ 0.04230034],
# [-0.1222527 ],
# [ 0.7392676 ],
# [-0.8136974 ],
# [ 0.01211023]], dtype=float32)}
"""
return
self
.
_keep_name_table
def
_parse_load_config
(
configs
):
supported_configs
=
[
'model_filename'
,
'params_filename'
,
'separate_params'
]
@
keep_name_table
.
setter
def
keep_name_table
(
self
,
value
):
if
not
isinstance
(
value
,
bool
):
raise
TypeError
(
"The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
%
type
(
value
))
self
.
_keep_name_table
=
value
# input check
for
key
in
configs
:
if
key
not
in
supported_configs
:
raise
ValueError
(
"The additional config (%s) of `paddle.jit.load` is not supported."
%
(
key
))
# construct inner config
inner_config
=
_SaveLoadConfig
()
inner_config
.
model_filename
=
configs
.
get
(
'model_filename'
,
None
)
inner_config
.
params_filename
=
configs
.
get
(
'params_filename'
,
None
)
inner_config
.
separate_params
=
configs
.
get
(
'separate_params'
,
None
)
return
inner_config
def
_get_input_var_names
(
inputs
,
input_spec
):
...
...
@@ -712,21 +442,8 @@ def _get_output_vars(outputs, output_spec):
return
result_list
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def
deprecate_save_load_configs
(
func
):
@
functools
.
wraps
(
func
)
def
wrapper
(
*
args
,
**
kwargs
):
if
'configs'
in
kwargs
:
kwargs
[
'config'
]
=
kwargs
[
'configs'
]
kwargs
.
pop
(
'configs'
)
return
func
(
*
args
,
**
kwargs
)
return
wrapper
@
deprecate_save_load_configs
@
switch_to_static_graph
def
save
(
layer
,
model_path
,
input_spec
=
None
,
config
=
None
):
def
save
(
layer
,
model_path
,
input_spec
=
None
,
**
configs
):
"""
Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer`
format model, which can be used for inference or fine-tuning after loading.
...
...
@@ -747,12 +464,25 @@ def save(layer, model_path, input_spec=None, config=None):
Args:
layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
model_path (str): the directory to save the model.
input_spec (list[
Variable
], optional): Describes the input of the saved model.
input_spec (list[
InputSpec|Tensor
], optional): Describes the input of the saved model.
It is the example inputs that will be passed to saved TranslatedLayer's forward
function. If None, all input variables of the original Layer's forward function
would be the inputs of the saved model. Default None.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
that specifies additional configuration options. Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) output_spec (list[Tensor]): Selects the output targets of the saved model.
By default, all return variables of original Layer's forward function are kept as the
output of the saved model. If the provided ``output_spec`` list is not all output variables,
the saved model will be pruned according to the given ``output_spec`` list.
(2) model_filename (string): The name of file to save the translated program of target Layer.
Default filename is :code:`__model__` .
(3) params_filename (string): The name of file to save all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(4) separate_params (bool): Configure whether to save the Layer parameters as separete files.
If True, each parameter will be saved to a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
Returns:
None
...
...
@@ -843,9 +573,7 @@ def save(layer, model_path, input_spec=None, config=None):
"The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
%
type
(
layer
))
configs
=
config
if
configs
is
None
:
configs
=
SaveLoadConfig
()
configs
=
_parse_save_configs
(
configs
)
# avoid change user given input_spec
inner_input_spec
=
None
...
...
@@ -964,9 +692,8 @@ def save(layer, model_path, input_spec=None, config=None):
pickle
.
dump
(
extra_var_info
,
f
,
protocol
=
2
)
@
deprecate_save_load_configs
@
dygraph_only
def
load
(
model_path
,
config
=
None
):
def
load
(
model_path
,
**
configs
):
"""
:api_attr: imperative
...
...
@@ -983,8 +710,17 @@ def load(model_path, config=None):
Args:
model_path (str): The directory path where the model is saved.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies
additional configuration options. Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) model_filename (string): The filename to load the translated program of target Layer.
Default filename is :code:`__model__` .
(2) params_filename (string): The filename to load all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
If True, each parameter will be loaded from a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
Returns:
TranslatedLayer: A Layer object can run saved translated model.
...
...
@@ -1179,6 +915,7 @@ def load(model_path, config=None):
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
"""
config
=
_parse_load_config
(
configs
)
return
TranslatedLayer
.
_construct
(
model_path
,
config
)
...
...
python/paddle/fluid/dygraph/static_runner.py
浏览文件 @
24a33bed
...
...
@@ -14,7 +14,7 @@
from
__future__
import
print_function
from
paddle.fluid.dygraph.jit
import
SaveLoadConfig
from
paddle.fluid.dygraph.jit
import
_
SaveLoadConfig
from
paddle.fluid.dygraph.io
import
TranslatedLayer
...
...
@@ -31,7 +31,7 @@ class StaticModelRunner(object):
"""
def
__new__
(
cls
,
model_dir
,
model_filename
=
None
,
params_filename
=
None
):
configs
=
SaveLoadConfig
()
configs
=
_
SaveLoadConfig
()
if
model_filename
is
not
None
:
configs
.
model_filename
=
model_filename
if
params_filename
is
not
None
:
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py
浏览文件 @
24a33bed
...
...
@@ -498,13 +498,11 @@ def do_train(args, to_static):
step
+=
1
# save inference model
if
to_static
:
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
crf_decode
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
model
,
model_path
=
args
.
model_save_dir
,
input_spec
=
[
words
,
length
],
configs
=
configs
)
output_spec
=
[
crf_decode
]
)
else
:
fluid
.
dygraph
.
save_dygraph
(
model
.
state_dict
(),
args
.
dy_param_path
)
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py
浏览文件 @
24a33bed
...
...
@@ -218,13 +218,11 @@ class TestMNISTWithToStatic(TestMNIST):
def
check_jit_save_load
(
self
,
model
,
inputs
,
input_spec
,
to_static
,
gt_out
):
if
to_static
:
infer_model_path
=
"./test_mnist_inference_model_by_jit_save"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
gt_out
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
model
,
model_path
=
infer_model_path
,
input_spec
=
input_spec
,
configs
=
configs
)
output_spec
=
[
gt_out
]
)
# load in static mode
static_infer_out
=
self
.
jit_load_and_run_inference_static
(
infer_model_path
,
inputs
)
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py
浏览文件 @
24a33bed
...
...
@@ -67,13 +67,11 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
layer
.
clear_gradients
()
# test for saving model in dygraph.guard
infer_model_dir
=
"./test_dy2stat_save_inference_model_in_guard"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
pred
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
layer
,
model_path
=
infer_model_dir
,
input_spec
=
[
x
],
configs
=
configs
)
output_spec
=
[
pred
]
)
# Check the correctness of the inference
dygraph_out
,
_
=
layer
(
x
)
self
.
check_save_inference_model
(
layer
,
[
x_data
],
dygraph_out
.
numpy
())
...
...
@@ -92,15 +90,12 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
expected_persistable_vars
=
set
([
p
.
name
for
p
in
model
.
parameters
()])
infer_model_dir
=
"./test_dy2stat_save_inference_model"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
if
fetch
is
not
None
:
configs
.
output_spec
=
fetch
configs
.
separate_params
=
True
fluid
.
dygraph
.
jit
.
save
(
layer
=
model
,
model_path
=
infer_model_dir
,
input_spec
=
feed
if
feed
else
None
,
configs
=
configs
)
separate_params
=
True
,
output_spec
=
fetch
if
fetch
else
None
)
saved_var_names
=
set
([
filename
for
filename
in
os
.
listdir
(
infer_model_dir
)
if
filename
!=
'__model__'
and
filename
!=
EXTRA_VAR_INFO_FILENAME
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
浏览文件 @
24a33bed
...
...
@@ -383,10 +383,10 @@ def train(train_reader, to_static):
step_idx
+=
1
if
step_idx
==
STEP_NUM
:
if
to_static
:
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
pred
]
fluid
.
dygraph
.
jit
.
save
(
se_resnext
,
MODEL_SAVE_PATH
,
[
img
],
configs
)
fluid
.
dygraph
.
jit
.
save
(
se_resnext
,
MODEL_SAVE_PATH
,
[
img
]
,
output_spec
=
[
pred
]
)
else
:
fluid
.
dygraph
.
save_dygraph
(
se_resnext
.
state_dict
(),
DY_STATE_DICT_SAVE_PATH
)
...
...
python/paddle/fluid/tests/unittests/test_directory_migration.py
浏览文件 @
24a33bed
...
...
@@ -43,15 +43,14 @@ class TestDirectory(unittest.TestCase):
'paddle.distributed.prepare_context'
,
'paddle.DataParallel'
,
'paddle.jit'
,
'paddle.jit.TracedLayer'
,
'paddle.jit.to_static'
,
'paddle.jit.ProgramTranslator'
,
'paddle.jit.TranslatedLayer'
,
'paddle.jit.save'
,
'paddle.jit.load'
,
'paddle.SaveLoadConfig'
,
'paddle.NoamDecay'
,
'paddle.PiecewiseDecay'
,
'paddle.NaturalExpDecay'
,
'paddle.ExponentialDecay'
,
'paddle.InverseTimeDecay'
,
'paddle.PolynomialDecay'
,
'paddle.CosineDecay'
,
'paddle.static.Executor'
,
'paddle.static.global_scope'
,
'paddle.static.scope_guard'
,
'paddle.static.append_backward'
,
'paddle.static.gradients'
,
'paddle.static.BuildStrategy'
,
'paddle.static.CompiledProgram'
,
'paddle.static.ExecutionStrategy'
,
'paddle.jit.save'
,
'paddle.jit.load'
,
'paddle.NoamDecay'
,
'paddle.PiecewiseDecay'
,
'paddle.NaturalExpDecay'
,
'paddle.ExponentialDecay'
,
'paddle.InverseTimeDecay'
,
'paddle.PolynomialDecay'
,
'paddle.CosineDecay'
,
'paddle.static.Executor'
,
'paddle.static.global_scope'
,
'paddle.static.scope_guard'
,
'paddle.static.append_backward'
,
'paddle.static.gradients'
,
'paddle.static.BuildStrategy'
,
'paddle.static.CompiledProgram'
,
'paddle.static.ExecutionStrategy'
,
'paddle.static.default_main_program'
,
'paddle.static.default_startup_program'
,
'paddle.static.Program'
,
'paddle.static.name_scope'
,
'paddle.static.program_guard'
,
...
...
@@ -104,9 +103,7 @@ class TestDirectory(unittest.TestCase):
'paddle.imperative.TracedLayer'
,
'paddle.imperative.declarative'
,
'paddle.imperative.ProgramTranslator'
,
'paddle.imperative.TranslatedLayer'
,
'paddle.imperative.jit.save'
,
'paddle.imperative.jit.load'
,
'paddle.imperative.jit.SaveLoadConfig'
,
'paddle.imperative.NoamDecay'
'paddle.imperative.jit.load'
,
'paddle.imperative.NoamDecay'
'paddle.imperative.PiecewiseDecay'
,
'paddle.imperative.NaturalExpDecay'
,
'paddle.imperative.ExponentialDecay'
,
...
...
python/paddle/fluid/tests/unittests/test_jit_save_load.py
浏览文件 @
24a33bed
...
...
@@ -225,16 +225,13 @@ class TestJitSaveLoad(unittest.TestCase):
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
def
train_and_save_model
(
self
,
model_path
=
None
,
configs
=
None
):
def
train_and_save_model
(
self
,
model_path
=
None
):
layer
=
LinearNet
(
784
,
1
)
example_inputs
,
layer
,
_
=
train
(
layer
)
final_model_path
=
model_path
if
model_path
else
self
.
model_path
orig_input_types
=
[
type
(
x
)
for
x
in
example_inputs
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
layer
,
model_path
=
final_model_path
,
input_spec
=
example_inputs
,
configs
=
configs
)
layer
=
layer
,
model_path
=
final_model_path
,
input_spec
=
example_inputs
)
new_input_types
=
[
type
(
x
)
for
x
in
example_inputs
]
self
.
assertEqual
(
orig_input_types
,
new_input_types
)
return
layer
...
...
@@ -314,7 +311,6 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
[
None
,
8
],
name
=
'x'
)])
model_path
=
"model.input_spec.output_spec"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
# check inputs and outputs
self
.
assertTrue
(
len
(
net
.
forward
.
inputs
)
==
1
)
input_x
=
net
.
forward
.
inputs
[
0
]
...
...
@@ -322,11 +318,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
self
.
assertTrue
(
input_x
.
name
==
'x'
)
# 1. prune loss
configs
.
output_spec
=
net
.
forward
.
outputs
[:
1
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
configs
=
configs
)
output_spec
=
net
.
forward
.
outputs
[:
1
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
output_spec
=
output_spec
)
# 2. load to infer
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
configs
=
configs
)
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
x
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
4
,
8
)).
astype
(
'float32'
))
pred
=
infer_layer
(
x
)
...
...
@@ -335,7 +331,6 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
net
=
LinearNetMultiInput
(
8
,
8
)
model_path
=
"model.multi_inout.output_spec1"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
# 1. check inputs and outputs
self
.
assertTrue
(
len
(
net
.
forward
.
inputs
)
==
2
)
input_x
=
net
.
forward
.
inputs
[
0
]
...
...
@@ -344,11 +339,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
self
.
assertTrue
(
input_y
.
shape
==
(
-
1
,
8
))
# 2. prune loss
configs
.
output_spec
=
net
.
forward
.
outputs
[:
2
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
configs
=
configs
)
output_spec
=
net
.
forward
.
outputs
[:
2
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
output_spec
=
output_spec
)
# 3. load to infer
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
configs
=
configs
)
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
x
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
4
,
8
)).
astype
(
'float32'
))
y
=
fluid
.
dygraph
.
to_variable
(
...
...
@@ -358,10 +353,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
# 1. prune y and loss
model_path
=
"model.multi_inout.output_spec2"
configs
.
output_spec
=
net
.
forward
.
outputs
[:
1
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
[
input_x
],
configs
)
output_spec
=
net
.
forward
.
outputs
[:
1
]
fluid
.
dygraph
.
jit
.
save
(
net
,
model_path
,
[
input_x
],
output_spec
=
output_spec
)
# 2. load again
infer_layer2
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
configs
=
configs
)
infer_layer2
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
# 3. predict
pred_xx
=
infer_layer2
(
x
)
...
...
@@ -377,16 +373,16 @@ class TestJitSaveLoadConfig(unittest.TestCase):
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
def
basic_save_load
(
self
,
layer
,
model_path
,
configs
):
def
basic_save_load
(
self
,
layer
,
model_path
,
**
configs
):
# 1. train & save
example_inputs
,
train_layer
,
_
=
train
(
layer
)
fluid
.
dygraph
.
jit
.
save
(
layer
=
train_layer
,
model_path
=
model_path
,
input_spec
=
example_inputs
,
configs
=
configs
)
**
configs
)
# 2. load
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
configs
=
configs
)
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
**
configs
)
train_layer
.
eval
()
# 3. inference & compare
x
=
fluid
.
dygraph
.
to_variable
(
...
...
@@ -397,23 +393,18 @@ class TestJitSaveLoadConfig(unittest.TestCase):
def
test_model_filename
(
self
):
layer
=
LinearNet
(
784
,
1
)
model_path
=
"model.save_load_config.output_spec"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
model_filename
=
"__simplenet__"
self
.
basic_save_load
(
layer
,
model_path
,
configs
)
self
.
basic_save_load
(
layer
,
model_path
,
model_filename
=
"__simplenet__"
)
def
test_params_filename
(
self
):
layer
=
LinearNet
(
784
,
1
)
model_path
=
"model.save_load_config.params_filename"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
params_filename
=
"__params__"
self
.
basic_save_load
(
layer
,
model_path
,
configs
)
self
.
basic_save_load
(
layer
,
model_path
,
params_filename
=
"__params__"
)
def
test_separate_params
(
self
):
layer
=
LinearNet
(
784
,
1
)
model_path
=
"model.save_load_config.separate_params"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
separate_params
=
True
self
.
basic_save_load
(
layer
,
model_path
,
configs
)
self
.
basic_save_load
(
layer
,
model_path
,
separate_params
=
True
)
def
test_output_spec
(
self
):
train_layer
=
LinearNetReturnLoss
(
8
,
8
)
...
...
@@ -428,16 +419,15 @@ class TestJitSaveLoadConfig(unittest.TestCase):
train_layer
.
clear_gradients
()
model_path
=
"model.save_load_config.output_spec"
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
out
]
output_spec
=
[
out
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
train_layer
,
model_path
=
model_path
,
input_spec
=
[
x
],
configs
=
configs
)
output_spec
=
output_spec
)
train_layer
.
eval
()
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
,
configs
=
configs
)
infer_layer
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
x
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
4
,
8
)).
astype
(
'float32'
))
self
.
assertTrue
(
...
...
@@ -494,13 +484,12 @@ class TestJitPruneModelAndLoad(unittest.TestCase):
adam
.
minimize
(
loss
)
train_layer
.
clear_gradients
()
configs
=
fluid
.
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
output_spec
=
[
hidden
]
output_spec
=
[
hidden
]
fluid
.
dygraph
.
jit
.
save
(
layer
=
train_layer
,
model_path
=
self
.
model_path
,
input_spec
=
[
x
],
configs
=
configs
)
output_spec
=
output_spec
)
return
train_layer
...
...
@@ -617,8 +606,6 @@ class TestJitSaveMultiCases(unittest.TestCase):
out
=
train_with_label
(
layer
)
model_path
=
"test_prune_to_static_after_train"
configs
=
paddle
.
SaveLoadConfig
()
configs
.
output_spec
=
[
out
]
paddle
.
jit
.
save
(
layer
,
model_path
,
...
...
@@ -626,7 +613,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec
(
shape
=
[
None
,
784
],
dtype
=
'float32'
,
name
=
"image"
)
],
configs
=
configs
)
output_spec
=
[
out
]
)
self
.
verify_inference_correctness
(
layer
,
model_path
,
True
)
...
...
@@ -634,10 +621,9 @@ class TestJitSaveMultiCases(unittest.TestCase):
layer
=
LinerNetWithLabel
(
784
,
1
)
model_path
=
"test_prune_to_static_no_train"
configs
=
paddle
.
SaveLoadConfig
()
# TODO: no train, cannot get output_spec var here
# now only can use index
configs
.
output_spec
=
layer
.
forward
.
outputs
[:
1
]
output_spec
=
layer
.
forward
.
outputs
[:
1
]
paddle
.
jit
.
save
(
layer
,
model_path
,
...
...
@@ -645,7 +631,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec
(
shape
=
[
None
,
784
],
dtype
=
'float32'
,
name
=
"image"
)
],
configs
=
configs
)
output_spec
=
output_spec
)
self
.
verify_inference_correctness
(
layer
,
model_path
,
True
)
...
...
@@ -676,10 +662,8 @@ class TestJitSaveMultiCases(unittest.TestCase):
train
(
layer
)
model_path
=
"test_not_prune_output_spec_name_warning"
configs
=
paddle
.
SaveLoadConfig
()
out
=
paddle
.
to_tensor
(
np
.
random
.
random
((
1
,
1
)).
astype
(
'float'
))
configs
.
output_spec
=
[
out
]
paddle
.
jit
.
save
(
layer
,
model_path
,
configs
=
configs
)
paddle
.
jit
.
save
(
layer
,
model_path
,
output_spec
=
[
out
])
self
.
verify_inference_correctness
(
layer
,
model_path
)
...
...
@@ -708,9 +692,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
train_with_label
(
layer
)
model_path
=
"test_prune_to_static_after_train"
configs
=
paddle
.
SaveLoadConfig
()
out
=
paddle
.
to_tensor
(
np
.
random
.
random
((
1
,
1
)).
astype
(
'float'
))
configs
.
output_spec
=
[
out
]
with
self
.
assertRaises
(
ValueError
):
paddle
.
jit
.
save
(
layer
,
...
...
@@ -719,7 +701,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec
(
shape
=
[
None
,
784
],
dtype
=
'float32'
,
name
=
"image"
)
],
configs
=
configs
)
output_spec
=
[
out
]
)
class
TestJitSaveLoadEmptyLayer
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_load_state_dict_from_old_format.py
浏览文件 @
24a33bed
...
...
@@ -63,6 +63,8 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self
.
epoch_num
=
1
self
.
batch_size
=
128
self
.
batch_num
=
10
# enable static mode
paddle
.
enable_static
()
def
train_and_save_model
(
self
,
only_params
=
False
):
with
new_program_scope
():
...
...
@@ -136,13 +138,12 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self
.
params_filename
=
None
orig_param_dict
=
self
.
train_and_save_model
()
config
=
paddle
.
SaveLoadConfig
()
config
.
separate_params
=
True
config
.
model_filename
=
self
.
model_filename
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
config
)
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
model_filename
=
self
.
model_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
load_param_dict
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
config
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
model_filename
=
self
.
model_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
new_load_param_dict
)
def
test_load_with_param_filename
(
self
):
...
...
@@ -151,12 +152,12 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self
.
params_filename
=
"static_mnist.params"
orig_param_dict
=
self
.
train_and_save_model
()
config
=
paddle
.
SaveLoadConfig
()
config
.
params_filename
=
self
.
params_filename
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
config
)
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
params_filename
=
self
.
params_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
load_param_dict
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
config
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
params_filename
=
self
.
params_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
new_load_param_dict
)
def
test_load_with_model_and_param_filename
(
self
):
...
...
@@ -165,13 +166,16 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self
.
params_filename
=
"static_mnist.params"
orig_param_dict
=
self
.
train_and_save_model
()
config
=
paddle
.
SaveLoadConfig
()
config
.
params_filename
=
self
.
params_filename
config
.
model_filename
=
self
.
model_filename
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
config
)
load_param_dict
,
_
=
fluid
.
load_dygraph
(
self
.
save_dirname
,
params_filename
=
self
.
params_filename
,
model_filename
=
self
.
model_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
load_param_dict
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
config
)
new_load_param_dict
=
paddle
.
load
(
self
.
save_dirname
,
params_filename
=
self
.
params_filename
,
model_filename
=
self
.
model_filename
)
self
.
check_load_state_dict
(
orig_param_dict
,
new_load_param_dict
)
def
test_load_state_dict_from_save_params
(
self
):
...
...
python/paddle/framework/__init__.py
浏览文件 @
24a33bed
...
...
@@ -20,8 +20,8 @@ __all__ = [
]
__all__
+=
[
'grad'
,
'LayerList'
,
'load'
,
'save'
,
'
SaveLoadConfig'
,
'to_variable
'
,
'
no_grad'
,
'
DataParallel'
'grad'
,
'LayerList'
,
'load'
,
'save'
,
'
to_variable'
,
'no_grad
'
,
'DataParallel'
]
__all__
+=
[
...
...
@@ -50,7 +50,6 @@ from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS
from
..fluid.dygraph.base
import
grad
#DEFINE_ALIAS
from
.io
import
save
from
.io
import
load
from
..fluid.dygraph.jit
import
SaveLoadConfig
#DEFINE_ALIAS
from
..fluid.dygraph.parallel
import
DataParallel
#DEFINE_ALIAS
from
..fluid.dygraph.learning_rate_scheduler
import
NoamDecay
#DEFINE_ALIAS
...
...
python/paddle/framework/io.py
浏览文件 @
24a33bed
...
...
@@ -26,6 +26,7 @@ import paddle
from
paddle
import
fluid
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
Variable
,
_varbase_creator
,
_dygraph_tracer
from
paddle.fluid.dygraph.jit
import
_SaveLoadConfig
from
paddle.fluid.dygraph.io
import
_construct_program_holders
,
_construct_params_and_buffers
,
EXTRA_VAR_INFO_FILENAME
__all__
=
[
...
...
@@ -116,6 +117,29 @@ def _load_state_dict_from_save_params(model_path):
return
load_param_dict
def
_parse_load_config
(
configs
):
supported_configs
=
[
'model_filename'
,
'params_filename'
,
'separate_params'
,
'keep_name_table'
]
# input check
for
key
in
configs
:
if
key
not
in
supported_configs
:
raise
ValueError
(
"The additional config (%s) of `paddle.load` is not supported."
%
key
)
# construct inner config
inner_config
=
_SaveLoadConfig
()
inner_config
.
model_filename
=
configs
.
get
(
'model_filename'
,
None
)
inner_config
.
params_filename
=
configs
.
get
(
'params_filename'
,
None
)
inner_config
.
separate_params
=
configs
.
get
(
'separate_params'
,
None
)
inner_config
.
keep_name_table
=
configs
.
get
(
'keep_name_table'
,
None
)
return
inner_config
def
save
(
obj
,
path
):
'''
Save an object to the specified path.
...
...
@@ -178,7 +202,7 @@ def save(obj, path):
pickle
.
dump
(
saved_obj
,
f
,
protocol
=
2
)
def
load
(
path
,
config
=
None
):
def
load
(
path
,
**
configs
):
'''
Load an object can be used in paddle from specified path.
...
...
@@ -197,10 +221,20 @@ def load(path, config=None):
path(str) : The path to load the target object. Generally, the path is the target
file path, when compatible with loading the saved results of
``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``paddle.jit.save/paddle.static.save_inference_model``
formats. Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) model_filename (string): The filename to load the translated program of target Layer.
Default filename is :code:`__model__` .
(2) params_filename (string): The filename to load all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
If True, each parameter will be loaded from a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
(4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in
loaded state dict. This dict is the debugging information saved when call ``paddle.save`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in ``paddle.load`` result. Default: False.
Returns:
Object(Object): a target object can be used in paddle
...
...
@@ -242,8 +276,7 @@ def load(path, config=None):
"`paddle.load('model')`."
raise
ValueError
(
error_msg
%
path
)
if
config
is
None
:
config
=
paddle
.
SaveLoadConfig
()
config
=
_parse_load_config
(
configs
)
# 2. load target
load_result
=
None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录