Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
247002ec
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
247002ec
编写于
8月 05, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
8月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
commit (#44887)
上级
24b3bbde
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
594 addition
and
43 deletion
+594
-43
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+2
-0
paddle/fluid/inference/tensorrt/convert/squeeze2_op.cc
paddle/fluid/inference/tensorrt/convert/squeeze2_op.cc
+82
-0
paddle/fluid/inference/tensorrt/convert/unsqueeze2_op.cc
paddle/fluid/inference/tensorrt/convert/unsqueeze2_op.cc
+101
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+42
-0
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
+103
-43
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_squeeze2.py
...tests/unittests/ir/inference/test_trt_convert_squeeze2.py
+138
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_unsqueeze2.py
...sts/unittests/ir/inference/test_trt_convert_unsqueeze2.py
+124
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
247002ec
...
...
@@ -1808,6 +1808,8 @@ USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER
(
preln_skip_layernorm
)
USE_TRT_CONVERTER
(
roll
)
USE_TRT_CONVERTER
(
strided_slice
)
USE_TRT_CONVERTER
(
squeeze2
)
USE_TRT_CONVERTER
(
unsqueeze2
)
#endif
namespace
paddle_infer
{
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
247002ec
...
...
@@ -56,6 +56,8 @@ nv_library(
strided_slice_op.cc
preln_skip_layernorm.cc
roll_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto
op_registry
)
...
...
paddle/fluid/inference/tensorrt/convert/squeeze2_op.cc
0 → 100644
浏览文件 @
247002ec
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
Squeeze2OpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid squeeze2 op to tensorrt shuffle layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
input_dims
=
input
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
// Get Attrs
std
::
vector
<
int
>
axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"axes"
));
PADDLE_ENFORCE_GT
(
axes
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(axes).size should be > 0 in squeeze2 op in TensorRT,"
"but received axes.size() = %d."
,
axes
.
size
()));
std
::
vector
<
bool
>
should_squeeze
(
input_dims
.
nbDims
,
false
);
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
if
(
engine_
->
with_dynamic_shape
())
{
axes
[
i
]
+=
(
axes
[
i
]
<
0
)
?
input_dims
.
nbDims
:
0
;
}
else
{
axes
[
i
]
+=
(
axes
[
i
]
<
0
)
?
input_dims
.
nbDims
:
-
1
;
}
should_squeeze
[
axes
[
i
]]
=
true
;
}
nvinfer1
::
Dims
trt_out_dims
;
trt_out_dims
.
nbDims
=
0
;
std
::
vector
<
int32_t
>
gather_indices
;
for
(
size_t
i
=
0
;
i
<
should_squeeze
.
size
();
i
++
)
{
if
(
should_squeeze
[
i
])
continue
;
gather_indices
.
push_back
(
i
);
// for static shape
trt_out_dims
.
d
[
trt_out_dims
.
nbDims
]
=
input_dims
.
d
[
i
];
trt_out_dims
.
nbDims
++
;
}
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input
);
if
(
engine_
->
with_dynamic_shape
())
{
auto
*
shape_tensor
=
Shape
(
input
);
auto
*
real_shape_tensor
=
Gather
(
shape_tensor
,
gather_indices
);
layer
->
setInput
(
1
,
*
real_shape_tensor
);
}
else
{
layer
->
setReshapeDimensions
(
trt_out_dims
);
}
RreplenishLayerAndOutput
(
layer
,
"squeeze2"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
squeeze2
,
Squeeze2OpConverter
);
paddle/fluid/inference/tensorrt/convert/unsqueeze2_op.cc
0 → 100644
浏览文件 @
247002ec
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
Unsqueeze2OpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid unsqueeze2 op to tensorrt shuffle layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
input_dims
=
input
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
// Get Attrs
std
::
vector
<
int
>
axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"axes"
));
PADDLE_ENFORCE_GT
(
axes
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(axes).size should be > 0 in unsqueeze2 op in TensorRT,"
"but received axes.size() = %d."
,
axes
.
size
()));
std
::
vector
<
bool
>
should_unsqueeze
(
input_dims
.
nbDims
+
axes
.
size
(),
false
);
int
cur_out_rank
=
input_dims
.
nbDims
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
cur_out_rank
++
;
if
(
engine_
->
with_dynamic_shape
())
{
axes
[
i
]
+=
(
axes
[
i
]
<
0
)
?
cur_out_rank
:
0
;
}
else
{
axes
[
i
]
+=
(
axes
[
i
]
<
0
)
?
cur_out_rank
:
-
1
;
}
// axes[i] is relative to cur_out_rank
// we make [axes[i], cur_out_rank - 2] shift right
// and make (axes[i]) to true!
for
(
int
j
=
cur_out_rank
-
1
;
j
>
axes
[
i
];
j
--
)
{
should_unsqueeze
[
j
]
=
should_unsqueeze
[
j
-
1
];
}
if
(
axes
[
i
]
>=
cur_out_rank
)
should_unsqueeze
[
cur_out_rank
-
1
]
=
true
;
else
should_unsqueeze
[
axes
[
i
]]
=
true
;
}
nvinfer1
::
Dims
trt_out_dims
;
trt_out_dims
.
nbDims
=
should_unsqueeze
.
size
();
std
::
vector
<
int32_t
>
gather_indices
;
int
in_rank_i
=
0
;
for
(
size_t
i
=
0
;
i
<
should_unsqueeze
.
size
();
i
++
)
{
if
(
should_unsqueeze
[
i
])
{
trt_out_dims
.
d
[
i
]
=
1
;
gather_indices
.
push_back
(
input_dims
.
nbDims
);
continue
;
}
trt_out_dims
.
d
[
i
]
=
input_dims
.
d
[
in_rank_i
];
gather_indices
.
push_back
(
in_rank_i
);
in_rank_i
++
;
}
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input
);
if
(
engine_
->
with_dynamic_shape
())
{
auto
*
shape_tensor
=
Shape
(
input
);
std
::
vector
<
int32_t
>
all_one
(
axes
.
size
(),
1
);
auto
*
all_one_tensor
=
Add1DConstantLayer
(
all_one
);
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
=
{
shape_tensor
,
all_one_tensor
};
auto
*
real_shape_tensor
=
Gather
(
Concat
(
concat_inputs
),
gather_indices
);
layer
->
setInput
(
1
,
*
real_shape_tensor
);
}
else
{
layer
->
setReshapeDimensions
(
trt_out_dims
);
}
RreplenishLayerAndOutput
(
layer
,
"unsqueeze2"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
unsqueeze2
,
Unsqueeze2OpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
247002ec
...
...
@@ -114,6 +114,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"bilinear_interp_v2"
,
"cast"
,
"pool3d"
,
"squeeze2"
,
"unsqueeze2"
,
"deformable_conv"
,
"relu6"
,
"hard_sigmoid"
,
...
...
@@ -179,6 +181,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"nearest_interp_v2"
,
"cast"
,
"pool3d"
,
"squeeze2"
,
"unsqueeze2"
,
"deformable_conv"
,
"relu6"
,
"hard_sigmoid"
,
...
...
@@ -891,6 +895,44 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}
if
(
op_type
==
"squeeze2"
)
{
std
::
vector
<
int
>
axes
;
if
(
desc
.
HasAttr
(
"axes"
))
{
axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"axes"
));
}
if
(
axes
.
size
()
==
0
)
{
VLOG
(
3
)
<<
"The necessary attributes of the squeeze2 operator axes is "
"missing."
;
return
false
;
}
if
(
!
with_dynamic_shape
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
0
)
!=
axes
.
end
())
{
VLOG
(
3
)
<<
"Invalid squeeze axes. Axes having batch axis is not "
"supported in static shape"
;
return
false
;
}
}
}
if
(
op_type
==
"unsqueeze2"
)
{
std
::
vector
<
int
>
axes
;
if
(
desc
.
HasAttr
(
"axes"
))
{
axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"axes"
));
}
if
(
axes
.
size
()
==
0
)
{
VLOG
(
3
)
<<
"The necessary attributes of the squeeze2 operator axes is "
"missing."
;
return
false
;
}
if
(
!
with_dynamic_shape
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
0
)
!=
axes
.
end
())
{
VLOG
(
3
)
<<
"Invalid squeeze axes. Axes having batch axis is not "
"supported in static shape"
;
return
false
;
}
}
}
if
(
op_type
==
"batch_norm"
)
{
const
std
::
vector
<
std
::
string
>
bn_inputs
=
{
"X"
,
"Bias"
,
"Mean"
,
"Scale"
,
"Variance"
};
...
...
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
浏览文件 @
247002ec
...
...
@@ -61,16 +61,26 @@ void PoolPlugin::serialize(void *buffer) const TRT_NOEXCEPT {
}
PoolPlugin
*
PoolPlugin
::
clone
()
const
TRT_NOEXCEPT
{
return
new
PoolPlugin
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
input_shape_
,
real_paddings_
);
return
new
PoolPlugin
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
input_shape_
,
real_paddings_
);
}
int
PoolPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
int
PoolPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
#if IS_TRT_VERSION_LT(8000)
void
**
outputs
,
void
*
workspace
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
#else
void
*
const
*
outputs
,
void
*
workspace
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
#endif
auto
const
&
input_dims
=
this
->
getInputDims
(
0
);
...
...
@@ -87,14 +97,31 @@ int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
phi
::
funcs
::
MaxPool
<
float
>
pool_process
;
phi
::
funcs
::
Pool2dDirectCUDAFunctor
<
phi
::
funcs
::
MaxPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
true
,
false
,
odatas
[
0
],
stream
,
pool_process
);
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
true
,
false
,
odatas
[
0
],
stream
,
pool_process
);
}
else
if
(
pool_type_
==
PoolType
::
avg
)
{
phi
::
funcs
::
AvgPool
<
float
>
pool_process
;
phi
::
funcs
::
Pool2dDirectCUDAFunctor
<
phi
::
funcs
::
AvgPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
exclusive_
,
adaptive_
,
odatas
[
0
],
stream
,
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
exclusive_
,
adaptive_
,
odatas
[
0
],
stream
,
pool_process
);
}
...
...
@@ -137,21 +164,25 @@ void PoolPluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
}
nvinfer1
::
IPluginV2DynamicExt
*
PoolPluginDynamic
::
clone
()
const
TRT_NOEXCEPT
{
return
new
PoolPluginDynamic
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
is_global_
);
return
new
PoolPluginDynamic
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
is_global_
);
}
nvinfer1
::
DimsExprs
PoolPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
nb_inputs
,
1
,
PADDLE_ENFORCE_EQ
(
nb_inputs
,
1
,
platform
::
errors
::
InvalidArgument
(
"The Split plugin should be only one input."
));
PADDLE_ENFORCE_EQ
(
inputs
[
0
].
d
[
1
]
->
isConstant
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The channel dimension should be "
"static, but we found it's dynamic."
));
nvinfer1
::
DimsExprs
output
(
inputs
[
0
]);
if
(
is_global_
&&
!
adaptive_
)
{
output
.
d
[
2
]
=
expr_builder
.
constant
(
1
);
...
...
@@ -184,16 +215,16 @@ nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
2
],
*
v0_tmp
),
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
2
],
*
v0_tmp
),
*
stri_0
),
*
one_value
);
output
.
d
[
3
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
3
],
*
v1_tmp
),
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
3
],
*
v1_tmp
),
*
stri_1
),
*
one_value
);
...
...
@@ -202,8 +233,8 @@ nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
2
],
*
ceil_tmp
),
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
2
],
*
ceil_tmp
),
*
stri_0
),
*
one_value
);
output
.
d
[
3
]
=
expr_builder
.
operation
(
...
...
@@ -211,7 +242,8 @@ nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
inputs
[
0
].
d
[
3
],
*
ceil1_tmp
),
*
inputs
[
0
].
d
[
3
],
*
ceil1_tmp
),
*
stri_1
),
*
one_value
);
}
...
...
@@ -220,17 +252,22 @@ nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
}
bool
PoolPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
return
((
in_out
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
...
...
@@ -238,13 +275,17 @@ bool PoolPluginDynamic::supportsFormatCombination(
}
nvinfer1
::
DataType
PoolPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Pool Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
PADDLE_ENFORCE_EQ
((
input_types
[
0
]
==
nvinfer1
::
DataType
::
kFLOAT
),
true
,
PADDLE_ENFORCE_EQ
((
input_types
[
0
]
==
nvinfer1
::
DataType
::
kFLOAT
),
true
,
platform
::
errors
::
InvalidArgument
(
"The input type should be half or float"
));
return
input_types
[
0
];
...
...
@@ -252,7 +293,8 @@ nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
int
PoolPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
auto
input_dims
=
input_desc
[
0
].
dims
;
...
...
@@ -279,8 +321,8 @@ int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
output_shape
[
2
]
=
1
;
output_shape
[
3
]
=
1
;
}
else
{
auto
data_dim
=
CalcOutputSize
(
{
h
,
w
},
ceil_mode_
,
adaptive_
,
ksize_
,
strides_
,
paddings_
);
auto
data_dim
=
CalcOutputSize
(
{
h
,
w
},
ceil_mode_
,
adaptive_
,
ksize_
,
strides_
,
paddings_
);
output_shape
[
2
]
=
data_dim
[
0
];
output_shape
[
3
]
=
data_dim
[
1
];
}
...
...
@@ -293,14 +335,32 @@ int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
phi
::
funcs
::
MaxPool
<
float
>
pool_process
;
phi
::
funcs
::
Pool2dDirectCUDAFunctor
<
phi
::
funcs
::
MaxPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
true
,
false
,
output
,
stream
,
pool_process
);
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
true
,
false
,
output
,
stream
,
pool_process
);
}
else
if
(
pool_type_
==
"avg"
)
{
phi
::
funcs
::
AvgPool
<
float
>
pool_process
;
phi
::
funcs
::
Pool2dDirectCUDAFunctor
<
phi
::
funcs
::
AvgPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
exclusive_
,
adaptive_
,
output
,
stream
,
pool_process
);
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
exclusive_
,
adaptive_
,
output
,
stream
,
pool_process
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_squeeze2.py
0 → 100644
浏览文件 @
247002ec
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
unittest
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertSqueeze2Test
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
len
(
inputs
[
'in_data'
].
shape
)
<=
max
(
attrs
[
0
][
'axes'
]):
return
False
return
True
def
sample_program_configs
(
self
):
for
dims
in
[
2
,
3
,
4
]:
for
batch
in
[
3
,
4
]:
for
axes
in
[[
2
],
[
2
,
3
],
[
-
1
]]:
self
.
batch
=
batch
self
.
dims
=
dims
self
.
axes
=
axes
dics
=
[{
"axes"
:
axes
}]
ops_config
=
[{
"op_type"
:
"squeeze2"
,
"op_inputs"
:
{
"X"
:
[
"in_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"out_data"
],
"XShape"
:
[
"XShape_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
# new_axes is the update of axes
new_axes
=
list
(
axes
)
for
i
in
range
(
len
(
new_axes
)):
if
(
new_axes
[
i
]
<
0
):
new_axes
[
i
]
+=
dims
if
(
max
(
new_axes
)
>=
dims
):
continue
# generate input data
self
.
input_shape
=
[
1
]
*
dims
for
i
in
range
(
dims
):
self
.
input_shape
[
i
]
=
np
.
random
.
randint
(
1
,
20
)
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
self
.
input_shape
[
0
]
=
batch
for
i
in
new_axes
:
self
.
input_shape
[
i
]
=
1
return
np
.
random
.
random
(
self
.
input_shape
).
astype
(
np
.
float32
)
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"in_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
,
batch
))
},
outputs
=
[
"out_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
max_shape
=
list
(
self
.
input_shape
)
min_shape
=
list
(
self
.
input_shape
)
opt_shape
=
list
(
self
.
input_shape
)
for
i
in
range
(
len
(
self
.
input_shape
)):
max_shape
[
i
]
=
max_shape
[
i
]
+
1
self
.
dynamic_shape
.
min_input_shape
=
{
"in_data"
:
min_shape
}
self
.
dynamic_shape
.
max_input_shape
=
{
"in_data"
:
max_shape
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"in_data"
:
opt_shape
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
self
.
trt_param
.
max_batch_size
=
9
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_unsqueeze2.py
0 → 100644
浏览文件 @
247002ec
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
unittest
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertUnsqueeze2Test
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
for
dims
in
[
2
,
3
,
4
]:
for
batch
in
[
3
,
4
]:
for
axes
in
[[
-
2
,
3
],
[
1
],
[
2
],
[
2
,
3
]]:
self
.
batch
=
batch
self
.
dims
=
dims
self
.
axes
=
axes
dics
=
[{
"axes"
:
axes
}]
ops_config
=
[{
"op_type"
:
"unsqueeze2"
,
"op_inputs"
:
{
"X"
:
[
"in_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"out_data"
],
"XShape"
:
[
"XShape_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
# generate input data
self
.
input_shape
=
[
1
]
*
dims
for
i
in
range
(
dims
):
self
.
input_shape
[
i
]
=
np
.
random
.
randint
(
1
,
20
)
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
self
.
input_shape
[
0
]
=
batch
return
np
.
random
.
random
(
self
.
input_shape
).
astype
(
np
.
float32
)
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"in_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
,
batch
))
},
outputs
=
[
"out_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
max_shape
=
list
(
self
.
input_shape
)
min_shape
=
list
(
self
.
input_shape
)
opt_shape
=
list
(
self
.
input_shape
)
for
i
in
range
(
len
(
self
.
input_shape
)):
max_shape
[
i
]
=
max_shape
[
i
]
+
1
self
.
dynamic_shape
.
min_input_shape
=
{
"in_data"
:
min_shape
}
self
.
dynamic_shape
.
max_input_shape
=
{
"in_data"
:
max_shape
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"in_data"
:
opt_shape
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
self
.
trt_param
.
max_batch_size
=
9
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录