Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
23544096
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
23544096
编写于
11月 15, 2018
作者:
T
tensor-tang
提交者:
GitHub
11月 15, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14374 from tensor-tang/fea/jit/act
add vrelu jitcode
上级
37d49b38
0043c42b
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
245 addition
and
245 deletion
+245
-245
paddle/fluid/operators/math/jit_code.cc
paddle/fluid/operators/math/jit_code.cc
+33
-0
paddle/fluid/operators/math/jit_code.h
paddle/fluid/operators/math/jit_code.h
+23
-0
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+7
-6
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+42
-99
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+108
-108
paddle/fluid/operators/math/jit_kernel_rnn.cc
paddle/fluid/operators/math/jit_kernel_rnn.cc
+19
-19
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+13
-13
未找到文件。
paddle/fluid/operators/math/jit_code.cc
浏览文件 @
23544096
...
...
@@ -118,6 +118,39 @@ void VXXJitCode::generate() {
ret
();
}
bool
ReluJitCode
::
init
(
int
d
)
{
return
MayIUse
(
avx
);
}
void
ReluJitCode
::
generate
()
{
int
offset
=
0
;
vxorps
(
ymm_zero
,
ymm_zero
,
ymm_zero
);
for
(
int
i
=
0
;
i
<
num_
/
AVX_FLOAT_BLOCK
;
++
i
)
{
vmovups
(
ymm_src
,
ptr
[
param1
+
offset
]);
vmaxps
(
ymm_dst
,
ymm_zero
,
ymm_src
);
vmovups
(
ptr
[
param2
+
offset
],
ymm_dst
);
offset
+=
sizeof
(
float
)
*
AVX_FLOAT_BLOCK
;
}
int
rest
=
num_
%
AVX_FLOAT_BLOCK
;
if
(
rest
>=
4
)
{
vmovups
(
xmm_src
,
ptr
[
param1
+
offset
]);
vmaxps
(
xmm_dst
,
xmm_zero
,
xmm_src
);
vmovups
(
ptr
[
param2
+
offset
],
xmm_dst
);
offset
+=
sizeof
(
float
)
*
4
;
rest
-=
4
;
}
if
(
rest
>=
2
)
{
vmovups
(
xmm_src
,
ptr
[
param1
+
offset
]);
vmaxps
(
xmm_dst
,
xmm_zero
,
xmm_src
);
vmovq
(
ptr
[
param2
+
offset
],
xmm_dst
);
offset
+=
sizeof
(
float
)
*
2
;
rest
-=
2
;
}
if
(
rest
>
0
)
{
vmovups
(
xmm_src
,
ptr
[
param1
+
offset
]);
vmaxps
(
xmm_dst
,
xmm_zero
,
xmm_src
);
vmovss
(
ptr
[
param2
+
offset
],
xmm_dst
);
}
ret
();
}
}
// namespace gen
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_code.h
浏览文件 @
23544096
...
...
@@ -85,6 +85,29 @@ class VXXJitCode : public JitCode {
ymm_t
ymm_zero
=
ymm_t
(
3
);
};
class
ReluJitCode
:
public
JitCode
{
public:
DECLARE_JIT_CODE
(
ReluJitCode
);
explicit
ReluJitCode
(
int
d
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
num_
(
d
)
{}
static
bool
init
(
int
d
);
void
generate
()
override
;
private:
int
num_
;
reg64_t
param1
{
abi_param1
};
reg64_t
param2
{
abi_param2
};
xmm_t
xmm_zero
=
xmm_t
(
0
);
xmm_t
xmm_src
=
xmm_t
(
1
);
xmm_t
xmm_dst
=
xmm_t
(
1
);
ymm_t
ymm_zero
=
ymm_t
(
0
);
ymm_t
ymm_src
=
ymm_t
(
1
);
ymm_t
ymm_dst
=
ymm_t
(
1
);
};
}
// namespace gen
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
23544096
...
...
@@ -97,37 +97,38 @@ class VAddBiasKernel : public Kernel {
template
<
typename
T
>
class
VActKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
VReluKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
ComputeDeprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
void
(
*
Compute
)(
const
T
*
,
T
*
,
int
);
};
template
<
typename
T
>
class
VIdentityKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
VExpKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
VSigmoidKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
VTanhKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
23544096
...
...
@@ -71,6 +71,13 @@ void VAddBiasRefer(const T* a, const T* x, T* y, int n) {
}
}
template
<
typename
T
>
void
VReluRefer
(
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
#ifdef PADDLE_WITH_MKLML
template
<
typename
T
>
void
VMulMKL
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
n
);
...
...
@@ -344,124 +351,60 @@ bool VAddBiasKernelImpl<float>::useJIT(int d) {
}
#endif
#undef DECLARE_STATIC_FUNC
REGISTER_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_JITKERNEL
(
vadd
,
VAddKernel
);
REGISTER_JITKERNEL
(
vaddrelu
,
VAddReluKernel
);
REGISTER_JITKERNEL
(
vscal
,
VScalKernel
);
REGISTER_JITKERNEL
(
vaddbias
,
VAddBiasKernel
);
/* VRelu JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
template
<
typename
T
>
class
VReluKernelImpl
:
public
VReluKernel
<
T
>
{
public:
explicit
VReluKernelImpl
(
int
d
)
:
VReluKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
DECLARE_STATIC_FUNC
;
explicit
VReluKernelImpl
(
int
d
)
:
VReluKernel
<
T
>
()
{
this
->
num_
=
d
;
// TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
size_t
sz
=
96
/*init*/
+
d
/
AVX_FLOAT_BLOCK
*
4
/* instructions*/
*
8
/*everage byte for each instruction*/
;
jitcode_
.
reset
(
new
gen
::
ReluJitCode
(
d
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
T
*
,
int
)
>
();
return
;
}
}
};
#define INTRI8_FLOAT(isa) \
template <> \
void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \
__m256 tmp = _mm256_loadu_ps(x); \
tmp = _mm256_max_ps(tmp, _mm256_setzero_ps()); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa) \
template <> \
void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
const { \
__m256 zeros = _mm256_setzero_ps(); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = _mm256_max_ps(tmp0, zeros); \
tmp1 = _mm256_max_ps(tmp1, zeros); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#endif
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d) \
: VReluKernel<float>() { \
this->num_ = d; \
this->end_ = AVX_FLOAT_BLOCK; \
this->rest_ = d - AVX_FLOAT_BLOCK; \
} \
template <> \
void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \
float* y) const { \
__m256 zeros = _mm256_setzero_ps(); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + this->rest_); \
tmp0 = _mm256_max_ps(tmp0, zeros); \
tmp1 = _mm256_max_ps(tmp1, zeros); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + this->rest_, tmp1); \
this
->
Compute
=
VReluRefer
<
T
>
;
}
#define INTRI_GT16_FLOAT(isa) \
template <> \
VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d) \
: VReluKernel<float>() { \
this->num_ = d; \
this->end_ = d - d % AVX_FLOAT_BLOCK; \
this->rest_ = d - AVX_FLOAT_BLOCK; \
} \
template <> \
void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
const { \
__m256 zeros = _mm256_setzero_ps(); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + i, tmp); \
} \
__m256 tmp = _mm256_loadu_ps(x + this->rest_); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + this->rest_, tmp); \
void
ComputeDeprecated
(
const
T
*
x
,
T
*
y
)
const
override
{
VReluRefer
(
x
,
y
,
this
->
num_
);
}
#ifdef PADDLE_WITH_XBYAK
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
INTRI16_FLOAT
(
jit
::
avx
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx
);
INTRI_GT16_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
INTRI16_FLOAT
(
jit
::
avx2
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx2
);
INTRI_GT16_FLOAT
(
jit
::
avx2
);
private:
std
::
unique_ptr
<
gen
::
ReluJitCode
>
jitcode_
{
nullptr
};
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT
(
jit
::
avx512f
);
INTRI16_FLOAT
(
jit
::
avx512f
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx512f
);
INTRI_GT16_FLOAT
(
jit
::
avx512f
);
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VReluKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
ReluJitCode
::
init
(
d
);
}
#endif
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef DECLARE_STATIC_FUNC
REGISTER_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_JITKERNEL
(
vadd
,
VAddKernel
);
REGISTER_JITKERNEL
(
vaddrelu
,
VAddReluKernel
);
REGISTER_JITKERNEL
(
vscal
,
VScalKernel
);
REGISTER_JITKERNEL
(
vaddbias
,
VAddBiasKernel
);
REGISTER_JITKERNEL
(
vrelu
,
VReluKernel
);
/* An empty JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VIdentityKernelImpl
:
public
VIdentityKernel
<
T
>
{
public:
explicit
VIdentityKernelImpl
(
int
d
)
:
VIdentityKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{}
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
override
{}
};
REGISTER_JITKERNEL_DEPRECATED
(
vrelu
,
VReluKernel
);
REGISTER_JITKERNEL_DEPRECATED
(
videntity
,
VIdentityKernel
);
}
// namespace jitkernel
...
...
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
23544096
...
...
@@ -35,7 +35,7 @@ template <typename T, jit::cpu_isa_t isa, jit_block>
class
VExpKernelImpl
:
public
VExpKernel
<
T
>
{
public:
explicit
VExpKernelImpl
(
int
d
)
:
VExpKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
std
::
exp
(
x
[
i
]);
}
...
...
@@ -43,18 +43,18 @@ class VExpKernelImpl : public VExpKernel<T> {
};
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block) \
template <> \
void VExpKernelImpl<float, isa, block>::Compute
(const float* x, float* y)
\
const {
\
platform::dynload::vsExp(this->num_, x, y); \
#define MKL_FLOAT(isa, block)
\
template <>
\
void VExpKernelImpl<float, isa, block>::Compute
Deprecated(const float* x,
\
float* y) const {
\
platform::dynload::vsExp(this->num_, x, y);
\
}
#define MKL_DOUBLE(isa, block)
\
template <>
\
void VExpKernelImpl<double, isa, block>::Compute
(const double* x, double* y)
\
const
{
\
platform::dynload::vdExp(this->num_, x, y);
\
#define MKL_DOUBLE(isa, block) \
template <> \
void VExpKernelImpl<double, isa, block>::Compute
Deprecated(
\
const
double* x, double* y) const {
\
platform::dynload::vdExp(this->num_, x, y); \
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kLT8
);
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT8LT16
);
...
...
@@ -211,24 +211,24 @@ __m256 ExpAVX2(__m256 x) {
}
// namespace detail
#define INTRI8_FLOAT(isa, expisa) \
template <> \
void VExpKernelImpl<float, isa, kEQ8>::Compute
(const float* x, float* y)
\
const {
\
__m256 tmp = _mm256_loadu_ps(x); \
_mm256_storeu_ps(y, expisa(tmp)); \
#define INTRI8_FLOAT(isa, expisa)
\
template <>
\
void VExpKernelImpl<float, isa, kEQ8>::Compute
Deprecated(const float* x,
\
float* y) const {
\
__m256 tmp = _mm256_loadu_ps(x);
\
_mm256_storeu_ps(y, expisa(tmp));
\
}
#define INTRI16_FLOAT(isa, expisa) \
template <> \
void VExpKernelImpl<float, isa, kEQ16>::Compute
(const float* x, float* y)
\
const {
\
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = expisa(tmp0); \
tmp1 = expisa(tmp1); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
#define INTRI16_FLOAT(isa, expisa)
\
template <>
\
void VExpKernelImpl<float, isa, kEQ16>::Compute
Deprecated(const float* x,
\
float* y) const {
\
__m256 tmp0 = _mm256_loadu_ps(x);
\
__m256 tmp1 = _mm256_loadu_ps(x + 8);
\
tmp0 = expisa(tmp0);
\
tmp1 = expisa(tmp1);
\
_mm256_storeu_ps(y, tmp0);
\
_mm256_storeu_ps(y + 8, tmp1);
\
}
#ifdef __AVX__
...
...
@@ -260,14 +260,14 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
this
->
num_
=
d
;
vexp_
=
KernelPool
::
Instance
().
template
Get
<
VExpKernel
<
T
>
>
(
d
);
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
override
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
static_cast
<
T
>
(
0
)
-
y
[
i
];
}
vexp_
->
Compute
(
y
,
y
);
vexp_
->
Compute
Deprecated
(
y
,
y
);
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
y
[
i
]);
}
...
...
@@ -285,30 +285,30 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)
#define INTRI8_FLOAT(isa, expisa)
\
template <>
\
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute
(const float* x, float* y)
\
const
{
\
/* TODO(TJ): try to use static const*/
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
\
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
\
__m256 tmp = _mm256_loadu_ps(x);
\
INTRI_SIGMOID(tmp, min, max, expisa);
\
_mm256_storeu_ps(y, tmp);
\
#define INTRI8_FLOAT(isa, expisa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute
Deprecated(
\
const
float* x, float* y) const {
\
/* TODO(TJ): try to use static const*/
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max, expisa); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa, expisa)
\
template <>
\
void VSigmoidKernelImpl<float, isa, kEQ16>::Compute
(const float* x,
\
float* y) const {
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
\
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
\
__m256 tmp0 = _mm256_loadu_ps(x);
\
__m256 tmp1 = _mm256_loadu_ps(x + 8);
\
INTRI_SIGMOID(tmp0, min, max, expisa);
\
INTRI_SIGMOID(tmp1, min, max, expisa);
\
_mm256_storeu_ps(y, tmp0);
\
_mm256_storeu_ps(y + 8, tmp1);
\
#define INTRI16_FLOAT(isa, expisa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ16>::Compute
Deprecated(
\
const float* x, float* y) const {
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_SIGMOID(tmp0, min, max, expisa); \
INTRI_SIGMOID(tmp1, min, max, expisa); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#define INTRI_GT8LT16_FLOAT(isa, expisa) \
...
...
@@ -322,8 +322,8 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute
(const float* x,
\
float* y) const {
\
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute
Deprecated(
\
const float* x, float* y) const {
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
...
...
@@ -335,7 +335,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute
(y + this->end_, y + this->end_);
\
vexp_->Compute
Deprecated(y + this->end_, y + this->end_);
\
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
...
...
@@ -352,8 +352,8 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT16>::Compute
(const float* x,
\
float* y) const {
\
void VSigmoidKernelImpl<float, isa, kGT16>::Compute
Deprecated(
\
const float* x, float* y) const {
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
...
...
@@ -367,7 +367,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute
(y + this->end_, y + this->end_);
\
vexp_->Compute
Deprecated(y + this->end_, y + this->end_);
\
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
...
...
@@ -408,10 +408,10 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vsigmoid_
=
KernelPool
::
Instance
().
template
Get
<
VSigmoidKernel
<
T
>
>
(
d
);
vaddbias_
=
KernelPool
::
Instance
().
template
Get
<
VAddBiasKernel
<
T
>
>
(
d
);
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
void
Compute
Deprecated
(
const
T
*
x
,
T
*
y
)
const
override
{
const
T
a
=
static_cast
<
T
>
(
2
),
b
=
static_cast
<
T
>
(
-
1
);
vscal_
->
Compute
(
&
a
,
x
,
y
,
this
->
num_
);
vsigmoid_
->
Compute
(
y
,
y
);
vsigmoid_
->
Compute
Deprecated
(
y
,
y
);
vscal_
->
Compute
(
&
a
,
y
,
y
,
this
->
num_
);
vaddbias_
->
Compute
(
&
b
,
y
,
y
,
this
->
num_
);
}
...
...
@@ -430,25 +430,25 @@ class VTanhKernelImpl : public VTanhKernel<T> {
tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp); \
tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))
#define INTRI8_FLOAT(isa, expisa) \
template <> \
void VTanhKernelImpl<float, isa, kEQ8>::Compute
(const float* x, float* y)
\
const {
\
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y, tmp); \
#define INTRI8_FLOAT(isa, expisa)
\
template <>
\
void VTanhKernelImpl<float, isa, kEQ8>::Compute
Deprecated(const float* x,
\
float* y) const {
\
__m256 tmp = _mm256_loadu_ps(x);
\
INTRI_VTANH(tmp, expisa);
\
_mm256_storeu_ps(y, tmp);
\
}
#define INTRI16_FLOAT(isa, expisa) \
template <> \
void VTanhKernelImpl<float, isa, kEQ16>::Compute
(const float* x, float* y)
\
const {
\
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_VTANH(tmp0, expisa); \
INTRI_VTANH(tmp1, expisa); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
#define INTRI16_FLOAT(isa, expisa)
\
template <>
\
void VTanhKernelImpl<float, isa, kEQ16>::Compute
Deprecated(const float* x,
\
float* y) const {
\
__m256 tmp0 = _mm256_loadu_ps(x);
\
__m256 tmp1 = _mm256_loadu_ps(x + 8);
\
INTRI_VTANH(tmp0, expisa);
\
INTRI_VTANH(tmp1, expisa);
\
_mm256_storeu_ps(y, tmp0);
\
_mm256_storeu_ps(y + 8, tmp1);
\
}
#define INTRI_GT8LT16_FLOAT(isa, expisa) \
...
...
@@ -466,8 +466,8 @@ class VTanhKernelImpl : public VTanhKernel<T> {
this->rest_); \
} \
template <> \
void VTanhKernelImpl<float, isa, kGT8LT16>::Compute
(const float* x,
\
float* y) const {
\
void VTanhKernelImpl<float, isa, kGT8LT16>::Compute
Deprecated(
\
const float* x, float* y) const {
\
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y, tmp); \
...
...
@@ -475,40 +475,40 @@ class VTanhKernelImpl : public VTanhKernel<T> {
y += AVX_FLOAT_BLOCK; \
const float a = 2.f, b = -1.f; \
vscal_->Compute(&a, x, y, this->num_); \
vsigmoid_->Compute
(y, y);
\
vsigmoid_->Compute
Deprecated(y, y);
\
vscal_->Compute(&a, y, y, this->num_); \
vaddbias_->Compute(&b, y, y, this->num_); \
}
#define INTRI_GT16_FLOAT(isa, expisa) \
template <> \
VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d) \
: VTanhKernel<float>() { \
this->num_ = d; \
this->rest_ = d % AVX_FLOAT_BLOCK; \
this->end_ = d - this->rest_; \
vscal_ = \
KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>( \
this->rest_); \
vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>( \
this->rest_); \
} \
template <> \
void VTanhKernelImpl<float, isa, kGT16>::Compute
(const float* x, float* y)
\
const {
\
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y + i, tmp); \
} \
x += this->end_; \
y += this->end_; \
const float a = 2.f, b = -1.f; \
vscal_->Compute(&a, x, y, this->num_); \
vsigmoid_->Compute
(y, y);
\
vscal_->Compute(&a, y, y, this->num_); \
vaddbias_->Compute(&b, y, y, this->num_); \
#define INTRI_GT16_FLOAT(isa, expisa)
\
template <>
\
VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)
\
: VTanhKernel<float>() {
\
this->num_ = d;
\
this->rest_ = d % AVX_FLOAT_BLOCK;
\
this->end_ = d - this->rest_;
\
vscal_ =
\
KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_);
\
vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(
\
this->rest_);
\
vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(
\
this->rest_);
\
}
\
template <>
\
void VTanhKernelImpl<float, isa, kGT16>::Compute
Deprecated(const float* x,
\
float* y) const {
\
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {
\
__m256 tmp = _mm256_loadu_ps(x + i);
\
INTRI_VTANH(tmp, expisa);
\
_mm256_storeu_ps(y + i, tmp);
\
}
\
x += this->end_;
\
y += this->end_;
\
const float a = 2.f, b = -1.f;
\
vscal_->Compute(&a, x, y, this->num_);
\
vsigmoid_->Compute
Deprecated(y, y);
\
vscal_->Compute(&a, y, y, this->num_);
\
vaddbias_->Compute(&b, y, y, this->num_);
\
}
#ifdef __AVX__
...
...
paddle/fluid/operators/math/jit_kernel_rnn.cc
浏览文件 @
23544096
...
...
@@ -175,26 +175,26 @@ class LSTMKernelImpl : public LSTMKernel<T> {
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
,
T
*
checked
)
const
override
{
// gates: W_ch, W_ih, W_fh, W_oh
act_gate_d3_
->
Compute
(
gates
+
d_
,
gates
+
d_
);
act_gate_d3_
->
Compute
Deprecated
(
gates
+
d_
,
gates
+
d_
);
/* C_t = C_t-1 * fgated + cand_gated * igated */
act_cand_d_
->
Compute
(
gates
,
gates
);
act_cand_d_
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d_
->
Compute
(
gates
,
gates
+
d_
,
gates
+
d_
,
d_
);
vmul_d_
->
Compute
(
ct_1
,
gates
+
d2_
,
gates
+
d2_
,
d_
);
vadd_d_
->
Compute
(
gates
+
d_
,
gates
+
d2_
,
ct
,
d_
);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_
->
Compute
(
ct
,
gates
+
d2_
);
act_cell_d_
->
Compute
Deprecated
(
ct
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
+
d2_
,
gates
+
d3_
,
ht
,
d_
);
}
void
ComputeC1H1
(
T
*
gates
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
)
const
override
{
/* C_t = igated * cgated*/
act_gate_d_
->
Compute
(
gates
+
d_
,
gates
+
d_
);
act_cand_d_
->
Compute
(
gates
,
gates
);
act_gate_d_
->
Compute
Deprecated
(
gates
+
d_
,
gates
+
d_
);
act_cand_d_
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d_
->
Compute
(
gates
,
gates
+
d_
,
ct
,
d_
);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_
->
Compute
(
gates
+
d3_
,
gates
+
d3_
);
act_cell_d_
->
Compute
(
ct
,
gates
+
d2_
);
act_gate_d_
->
Compute
Deprecated
(
gates
+
d3_
,
gates
+
d3_
);
act_cell_d_
->
Compute
Deprecated
(
ct
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
+
d2_
,
gates
+
d3_
,
ht
,
d_
);
}
...
...
@@ -292,32 +292,32 @@ class PeepholeKernelImpl : public LSTMKernel<T> {
vmul_d_
->
Compute
(
wp_data
,
ct_1
,
checked
,
d_
);
vmul_d_
->
Compute
(
wp_data
+
d_
,
ct_1
,
checked
+
d_
,
d_
);
vadd_d2_
->
Compute
(
checked
,
gates
+
d_
,
gates
+
d_
,
d2_
);
act_gate_d2_
->
Compute
(
gates
+
d_
,
gates
+
d_
);
act_gate_d2_
->
Compute
Deprecated
(
gates
+
d_
,
gates
+
d_
);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
act_cand_d_
->
Compute
(
gates
,
gates
);
act_cand_d_
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d_
->
Compute
(
gates
,
gates
+
d_
,
gates
+
d_
,
d_
);
vmul_d_
->
Compute
(
ct_1
,
gates
+
d2_
,
gates
+
d2_
,
d_
);
vadd_d_
->
Compute
(
gates
+
d_
,
gates
+
d2_
,
ct
,
d_
);
/* get ogated*/
vmul_d_
->
Compute
(
wp_data
+
d2_
,
ct
,
gates
+
d_
,
d_
);
vadd_d_
->
Compute
(
gates
+
d_
,
gates
+
d3_
,
gates
+
d3_
,
d_
);
act_gate_d_
->
Compute
(
gates
+
d3_
,
gates
+
d3_
);
act_gate_d_
->
Compute
Deprecated
(
gates
+
d3_
,
gates
+
d3_
);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_
->
Compute
(
ct
,
gates
+
d2_
);
act_cell_d_
->
Compute
Deprecated
(
ct
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
+
d2_
,
gates
+
d3_
,
ht
,
d_
);
}
void
ComputeC1H1
(
T
*
gates
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
)
const
override
{
/* C_t = igated * cgated*/
act_gate_d_
->
Compute
(
gates
+
d_
,
gates
+
d_
);
act_cand_d_
->
Compute
(
gates
,
gates
);
act_gate_d_
->
Compute
Deprecated
(
gates
+
d_
,
gates
+
d_
);
act_cand_d_
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d_
->
Compute
(
gates
,
gates
+
d_
,
ct
,
d_
);
/* get outgated, put W_oc * C_t on igated */
vmul_d_
->
Compute
(
wp_data
+
d2_
,
ct
,
gates
+
d_
,
d_
);
vadd_d_
->
Compute
(
gates
+
d_
,
gates
+
d3_
,
gates
+
d3_
,
d_
);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_
->
Compute
(
gates
+
d3_
,
gates
+
d3_
);
act_cell_d_
->
Compute
(
ct
,
gates
+
d2_
);
act_gate_d_
->
Compute
Deprecated
(
gates
+
d3_
,
gates
+
d3_
);
act_cell_d_
->
Compute
Deprecated
(
ct
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
+
d2_
,
gates
+
d3_
,
ht
,
d_
);
}
...
...
@@ -376,20 +376,20 @@ class GRUKernelImpl : public GRUKernel<T> {
}
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
override
{
act_gate_d_
->
Compute
(
gates
,
gates
);
act_state_d_
->
Compute
(
gates
+
d2_
,
gates
+
d2_
);
act_gate_d_
->
Compute
Deprecated
(
gates
,
gates
);
act_state_d_
->
Compute
Deprecated
(
gates
+
d2_
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
,
gates
+
d2_
,
ht
,
d_
);
}
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
// W: {W_update, W_reset; W_state}
act_gate_d2_
->
Compute
(
gates
,
gates
);
act_gate_d2_
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d_
->
Compute
(
ht_1
,
gates
+
d_
,
ht
,
d_
);
}
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
T
*
y
=
gates
+
d2_
;
act_state_d_
->
Compute
(
y
,
y
);
act_state_d_
->
Compute
Deprecated
(
y
,
y
);
// out = zt*ht~ + (1-zt)*ht_1
for
(
int
i
=
0
;
i
<
d_
;
++
i
)
{
ht
[
i
]
=
gates
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
gates
[
i
])
*
ht_1
[
i
];
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
23544096
...
...
@@ -92,7 +92,7 @@ TEST(JitKernel, vrelu) {
#endif
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
x_data
,
ztgt_data
);
ker
->
Compute
(
x_data
,
ztgt_data
,
d
);
}
auto
ttgte
=
GetCurrentUS
();
VLOG
(
30
)
<<
"Vec size "
<<
d
...
...
@@ -181,7 +181,7 @@ TEST(JitKernel, vexp) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
x_data
,
ztgt_data
);
ker
->
Compute
Deprecated
(
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -222,7 +222,7 @@ void vsigmoid_better(
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
0.
f
-
y
[
i
];
}
vexp
->
Compute
(
y
,
y
);
vexp
->
Compute
Deprecated
(
y
,
y
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
1.
f
/
(
1.
f
+
y
[
i
]);
}
...
...
@@ -253,7 +253,7 @@ TEST(JitKernel, vsigmoid) {
auto
trefe
=
GetCurrentUS
();
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
x_data
,
ztgt_data
);
ker
->
Compute
Deprecated
(
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -287,7 +287,7 @@ void vtanh_better(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
const
float
a
=
2.
f
,
b
=
-
1.
f
;
vscal
->
Compute
(
&
a
,
x
,
y
,
n
);
vsigmoid
->
Compute
(
y
,
y
);
vsigmoid
->
Compute
Deprecated
(
y
,
y
);
vscal
->
Compute
(
&
a
,
y
,
y
,
n
);
vaddbias
->
Compute
(
&
b
,
y
,
y
,
n
);
}
...
...
@@ -321,7 +321,7 @@ TEST(JitKernel, vtanh) {
auto
trefe
=
GetCurrentUS
();
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
x_data
,
ztgt_data
);
ker
->
Compute
Deprecated
(
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -344,8 +344,8 @@ void lstm_ctht_ref(
const
std
::
shared_ptr
<
const
paddle
::
operators
::
math
::
jitkernel
::
VExpKernel
<
float
>>&
vexp_1
,
const
int
d
,
float
*
gates
,
const
float
*
ct_1
,
float
*
ct
,
float
*
ht
)
{
vsigmoid_3d
->
Compute
(
gates
+
d
,
gates
+
d
);
vtanh_d
->
Compute
(
gates
,
gates
);
vsigmoid_3d
->
Compute
Deprecated
(
gates
+
d
,
gates
+
d
);
vtanh_d
->
Compute
Deprecated
(
gates
,
gates
);
const
float
*
i
=
gates
+
d
,
*
f
=
gates
+
d
*
2
,
*
o
=
gates
+
d
*
3
;
const
float
min
=
SIGMOID_THRESHOLD_MIN
;
const
float
max
=
SIGMOID_THRESHOLD_MAX
;
...
...
@@ -355,7 +355,7 @@ void lstm_ctht_ref(
// H_t = act_cell(C_t) * ogated
float
tmp
=
ct
[
k
]
*
2
;
tmp
=
0.
f
-
((
tmp
<
min
)
?
min
:
((
tmp
>
max
)
?
max
:
tmp
));
vexp_1
->
Compute
(
&
tmp
,
&
tmp
);
vexp_1
->
Compute
Deprecated
(
&
tmp
,
&
tmp
);
tmp
=
2.
f
/
(
1.
f
+
tmp
)
-
1.
f
;
ht
[
k
]
=
tmp
*
o
[
k
];
}
...
...
@@ -373,13 +373,13 @@ void lstm_ctht_better(
const
paddle
::
operators
::
math
::
jitkernel
::
VAddKernel
<
float
>>&
vadd_d
,
const
int
d
,
float
*
gates
,
const
float
*
ct_1
,
float
*
ct
,
float
*
ht
)
{
int
d2
=
d
*
2
;
vsigmoid_3d
->
Compute
(
gates
+
d
,
gates
+
d
);
vtanh_d
->
Compute
(
gates
,
gates
);
vsigmoid_3d
->
Compute
Deprecated
(
gates
+
d
,
gates
+
d
);
vtanh_d
->
Compute
Deprecated
(
gates
,
gates
);
vmul_d
->
Compute
(
gates
,
gates
+
d
,
gates
+
d
,
d
);
vmul_d
->
Compute
(
ct_1
,
gates
+
d2
,
gates
+
d2
,
d
);
vadd_d
->
Compute
(
gates
+
d
,
gates
+
d2
,
ct
,
d
);
/* H_t = act_cell(C_t) * ogated */
vtanh_d
->
Compute
(
ct
,
gates
+
d2
);
vtanh_d
->
Compute
Deprecated
(
ct
,
gates
+
d2
);
vmul_d
->
Compute
(
gates
+
d2
,
gates
+
d
*
3
,
ht
,
d
);
}
...
...
@@ -736,7 +736,7 @@ void vaddrelu_better(
const
paddle
::
operators
::
math
::
jitkernel
::
VReluKernel
<
float
>>&
vrelu
,
const
float
*
x
,
const
float
*
y
,
float
*
z
,
int
d
)
{
vadd
->
Compute
(
x
,
y
,
z
,
d
);
vrelu
->
Compute
(
z
,
z
);
vrelu
->
Compute
Deprecated
(
z
,
z
);
}
TEST
(
JitKernel
,
vaddrelu
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录