提交 2340ceda 编写于 作者: H hedaoyuan

Add groups in convolution GemmConvGradKernel.

上级 fb46345f
......@@ -82,19 +82,16 @@ class GemmConvKernel : public framework::OpKernel {
int in_step = input_channels / groups;
int out_step = output_channels / groups;
for (int i = 0; i < batch_size; i++) {
Tensor in_slice_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
Tensor out_slice_batch =
output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
// im2col
Tensor in_slice =
in_slice_batch.Slice<T>(g * in_step, (g + 1) * in_step);
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
Tensor out_slice =
out_slice_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
&out_slice, T(0.0), device_context);
......@@ -125,12 +122,13 @@ class GemmConvGradKernel : public framework::OpKernel {
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
// int groups = context.Attr<int>("groups");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_channels = output_grad->dims()[1];
int output_height = output_grad->dims()[2];
int output_width = output_grad->dims()[3];
......@@ -141,11 +139,11 @@ class GemmConvGradKernel : public framework::OpKernel {
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
framework::DDim col_shape = {input_channels, filter_height, filter_width,
output_height, output_width};
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels * filter_height * filter_width,
input_channels / groups * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
......@@ -176,26 +174,38 @@ class GemmConvGradKernel : public framework::OpKernel {
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
for (int i = 0; i < batch_size; i++) {
// gemm
Tensor out_slice =
Tensor out_grad_batch =
output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
math::matmul<Place, T>(filter, true, out_slice, false, T(1.0),
&col_matrix, T(0.0), device_context);
Tensor in_grad_batch = input_grad->Slice<T>(i, i + 1).Resize(input_shape);
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
for (int g = 0; g < groups; g++) {
// gemm
Tensor out_grad_slice =
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(filter_slice, true, out_grad_slice, false,
T(1.0), &col_matrix, T(0.0), device_context);
// col2im
Tensor in_grad_slice = input_grad->Slice<T>(i, i + 1).Resize(input_shape);
Tensor in_grad_slice =
in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
// im2col
Tensor in_slice = input->Slice<T>(i, i + 1).Resize(input_shape);
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
math::matmul<Place, T>(out_slice, false, col_matrix, true, T(1.0),
&filter_grad, T(1.0), device_context);
Tensor filter_grad_slice =
filter_grad.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(out_grad_slice, false, col_matrix, true, T(1.0),
&filter_grad_slice, T(1.0), device_context);
}
}
}
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册