From 2289c141c2722c10d3dc4146d58ba2384fb5c770 Mon Sep 17 00:00:00 2001 From: liuyuan Date: Mon, 26 Sep 2016 12:42:17 +0800 Subject: [PATCH] Refine comment for CRF related headers. (#117) --- paddle/gserver/layers/CRFLayer.h | 2 +- paddle/gserver/layers/LinearChainCRF.h | 48 +++++++++++++------------- 2 files changed, 25 insertions(+), 25 deletions(-) diff --git a/paddle/gserver/layers/CRFLayer.h b/paddle/gserver/layers/CRFLayer.h index c6ba8e7c965..58902a0d3b7 100644 --- a/paddle/gserver/layers/CRFLayer.h +++ b/paddle/gserver/layers/CRFLayer.h @@ -25,7 +25,7 @@ namespace paddle { /** * A layer for calculating the cost of sequential conditional random field * model. - * See LinearChainCRF.h for the detail of the CRF formulation. + * See class LinearChainCRF for the detail of the CRF formulation. */ class CRFLayer : public Layer { public: diff --git a/paddle/gserver/layers/LinearChainCRF.h b/paddle/gserver/layers/LinearChainCRF.h index 3bde1aa415c..c33c83b2598 100644 --- a/paddle/gserver/layers/LinearChainCRF.h +++ b/paddle/gserver/layers/LinearChainCRF.h @@ -21,39 +21,39 @@ namespace paddle { class LinearChainCRF { public: - /* - The size of para and grad must be (numClasses + 2) * numClasses. - The first numClasses values of para are for starting weights (a). - The next numClasses values of para are for ending weights (b), - The remaning values are for transition weights (w). - - The probability of a state sequence s of length L is defined as: - P(s) = (1/Z) exp(a_{s_1} + b_{s_L} - + \sum_{l=1}^L x_{s_l} - + \sum_{l=2}^L w_{s_{l-1},s_l}) - where Z is a normalization value so that the sum of P(s) over all possible - sequences is 1, and x is the input feature to the CRF. + /** + * The size of para and grad must be \f$(numClasses + 2) * numClasses\f$. + * The first numClasses values of para are for starting weights (\f$a\f$). + * The next numClasses values of para are for ending weights (\f$b\f$), + * The remaning values are for transition weights (\f$w\f$). + * + * The probability of a state sequence s of length \f$L\f$ is defined as: + * \f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L} + * + \sum_{l=1}^L x_{s_l} + * + \sum_{l=2}^L w_{s_{l-1},s_l})\f$ + * where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over all possible + * sequences is \f$1\f$, and \f$x\f$ is the input feature to the CRF. */ LinearChainCRF(int numClasses, real* para, real* grad); - /* - Calculate the negative log likelihood of s given x. - The size of x must be length * numClasses. Each consecutive numClasses - values are the features for one time step. + /** + * Calculate the negative log likelihood of s given x. + * The size of x must be length * numClasses. Each consecutive numClasses + * values are the features for one time step. */ real forward(real* x, int* s, int length); - /* - Calculate the gradient with respect to x, a, b, and w. - The gradient of x will be stored in dx. - backward() can only be called after a corresponding call to forward() with - the same x, s and length. - NOTE: The gradient is added to dx and grad (provided at constructor). + /** + * Calculate the gradient with respect to x, a, b, and w. + * The gradient of x will be stored in dx. + * backward() can only be called after a corresponding call to forward() with + * the same x, s and length. + * @note The gradient is added to dx and grad (provided at constructor). */ void backward(real* x, real* dx, int* s, int length); - /* - Find the most probable sequence given x. The result will be stored in s. + /** + * Find the most probable sequence given x. The result will be stored in s. */ void decode(real* x, int* s, int length); -- GitLab