提交 2057df7a 编写于 作者: F Feiyu Chan 提交者: lanxianghit

add fluid.layers.gelu & doc (#21515)

    Add a python interface for Gelu.
    Add documentation for fluid.layers.gelu.
上级 29c38445
...@@ -239,3 +239,82 @@ Examples: ...@@ -239,3 +239,82 @@ Examples:
# array([[ 0.21134382, -0. , 0.32876605], # array([[ 0.21134382, -0. , 0.32876605],
# [-0. , -0. , 1.0013918 ]], dtype=float32) # [-0. , -0. , 1.0013918 ]], dtype=float32)
""" """
__all__ += ['gelu']
_gelu_ = generate_layer_fn('gelu')
def gelu(x):
locals_var = locals().copy()
kwargs = dict()
for name, val in locals_var.items():
if val is not None:
kwargs[name] = val
return _gelu_(**kwargs)
gelu.__doc__ = """
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).
Equation:
.. math::
out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
Args:
x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.
Returns:
Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.
Examples:
.. code-block:: python
# declarative mode
import numpy as np
from paddle import fluid
x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
y = fluid.layers.gelu(x)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
start = fluid.default_startup_program()
main = fluid.default_main_program()
data = np.random.randn(2, 3).astype("float32")
exe.run(start)
y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
data
# array([[ 0.87165993, -1.0541513 , -0.37214822],
# [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32)
y_np
# array([[ 0.70456535, -0.15380788, -0.13207214],
# [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32)
.. code-block:: python
# imperative mode
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
data = np.random.randn(2, 3).astype("float32")
place = fluid.CPUPlace()
with dg.guard(place) as g:
x = dg.to_variable(data)
y = fluid.layers.gelu(x)
y_np = y.numpy()
data
# array([[ 0.87165993, -1.0541513 , -0.37214822],
# [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32)
y_np
# array([[ 0.70456535, -0.15380788, -0.13207214],
# [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32)
"""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from scipy.special import erf
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
class TestGeluOp(unittest.TestCase):
def _test_case1_cpu(self):
x = np.random.uniform(-1, 1, size=(11, 17)).astype(np.float32)
y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
place = fluid.CPUPlace()
with dg.guard(place) as g:
x_var = dg.to_variable(x)
y_var = fluid.layers.gelu(x_var)
y_test = y_var.numpy()
self.assertTrue(np.allclose(y_ref, y_test, rtol=1e-05, atol=1e-08))
def _test_case1_gpu(self):
x = np.random.uniform(-1, 1, size=(11, 17)).astype(np.float32)
y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
place = fluid.CUDAPlace(0)
with dg.guard(place) as g:
x_var = dg.to_variable(x)
y_var = fluid.layers.gelu(x_var)
y_test = y_var.numpy()
self.assertTrue(np.allclose(y_ref, y_test, rtol=1e-05, atol=1e-08))
def test_cases(self):
self._test_case1_cpu()
if fluid.is_compiled_with_cuda():
self._test_case1_gpu()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册