diff --git a/paddle/trainer/Trainer.cpp b/paddle/trainer/Trainer.cpp index 8465addaf9e03831e914be2c73901c3b1a9d537f..bd84545375117b178d4324f0ad03f5bc35ae925d 100644 --- a/paddle/trainer/Trainer.cpp +++ b/paddle/trainer/Trainer.cpp @@ -90,16 +90,6 @@ DEFINE_string(model_list, "", "File that saves the model list when evaluation"); namespace paddle { -void Trainer::init(int argc, char** argv) { - initMain(argc, argv); - initPython(argc, argv); - - auto config = TrainerConfigHelper::createFromFlagConfig(); - feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW); - - init(config); -} - void Trainer::init(const std::shared_ptr& config, bool testing, const std::shared_ptr& gradientMachine, diff --git a/paddle/trainer/Trainer.h b/paddle/trainer/Trainer.h index 7cbf18ace7a5fed053653c73e62d36c388b15123..c8ee4726c24c335ceda22ea3a20049b01d11c149 100644 --- a/paddle/trainer/Trainer.h +++ b/paddle/trainer/Trainer.h @@ -71,11 +71,6 @@ public: const std::shared_ptr& dataProvider = nullptr, const std::shared_ptr& testDataProvider = nullptr); - /** - * Initialize Trainer from command line flags. - */ - void init(int argc, char** argv); - /** * Train until num_passes reached. * One pass means neural network train through all training data.