diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index bae42593ddc6f7a7eb47d603752ad6efa9820b45..98fada7bdb46f4dd2927d6f93bcbcebbe7d18604 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -25,14 +25,14 @@ .. code-block:: bash - docker pull docker.paddlepaddle.org/paddle + docker pull docker.paddlepaddlehub.com/paddle 下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Dockeré•œåƒï¼š .. code-block:: bash docker pull paddlepaddle/paddle:latest-gpu - docker pull docker.paddlepaddle.org/paddle:latest-gpu + docker pull docker.paddlepaddlehub.com/paddle:latest-gpu 选择下载使用ä¸åŒçš„BLAS库的Dockeré•œåƒï¼š @@ -49,7 +49,7 @@ docker pull paddlepaddle/paddle:[tag] # 比如: - docker pull docker.paddlepaddle.org/paddle:0.10.0-gpu + docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu .. _docker_run: diff --git a/doc/getstarted/build_and_install/docker_install_en.rst b/doc/getstarted/build_and_install/docker_install_en.rst index 56a7c68e4d39c45249fa55a964dc48b7081596a6..b1d0890b4cdddb77114a80276130afd07c22d270 100644 --- a/doc/getstarted/build_and_install/docker_install_en.rst +++ b/doc/getstarted/build_and_install/docker_install_en.rst @@ -26,14 +26,14 @@ For users in China, we provide a faster mirror: .. code-block:: bash - docker pull docker.paddlepaddle.org/paddle + docker pull docker.paddlepaddlehub.com/paddle Download GPU version (cuda8.0_cudnn5_avx_mkl) images: .. code-block:: bash docker pull paddlepaddle/paddle:latest-gpu - docker pull docker.paddlepaddle.org/paddle:latest-gpu + docker pull docker.paddlepaddlehub.com/paddle:latest-gpu Choose between different BLAS version: @@ -53,7 +53,7 @@ and run: docker pull paddlepaddle/paddle:[tag] # i.e. - docker pull docker.paddlepaddle.org/paddle:0.10.0-gpu + docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu .. _docker_run: diff --git a/paddle/framework/variable_test.cc b/paddle/framework/variable_test.cc index e4732d9718e2b46a068963d44c4c1e04024f2330..e5585c8724d712e273d086001b6cbc3d59c46ebe 100644 --- a/paddle/framework/variable_test.cc +++ b/paddle/framework/variable_test.cc @@ -12,19 +12,6 @@ // See the License for the specific language governing permissions and // limitations under the License. -/* - Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -*/ - #include <memory> #include <string> diff --git a/paddle/operators/bipartite_match_op.cc b/paddle/operators/bipartite_match_op.cc index b0f7376d272a66e0b01d6b3f7e546372397772f7..83c8778fe4cec4d9d80de691e117a39fdd92f494 100644 --- a/paddle/operators/bipartite_match_op.cc +++ b/paddle/operators/bipartite_match_op.cc @@ -21,8 +21,6 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -constexpr char kEPS = 1e-6; - class BipartiteMatchOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -46,6 +44,7 @@ class BipartiteMatchKernel : public framework::OpKernel<T> { // The match_dist must be initialized to 0 at first. void BipartiteMatch(const Tensor& dist, int* match_indices, T* match_dist) const { + constexpr T kEPS = static_cast<T>(1e-6); PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2."); int64_t row = dist.dims()[0]; int64_t col = dist.dims()[1]; diff --git a/paddle/operators/conv_transpose_op.cc b/paddle/operators/conv_transpose_op.cc index a2382a7e42eb9c5c6a8f13265b0e6173e6b05f76..089290a506db10f676c8d7eb92663d2cb56892af 100644 --- a/paddle/operators/conv_transpose_op.cc +++ b/paddle/operators/conv_transpose_op.cc @@ -160,8 +160,8 @@ Example: Output shape: $(N, C_{out}, H_{out}, W_{out})$ Where $$ - H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\ - W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f + H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\ + W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 $$ )DOC"); } @@ -249,9 +249,9 @@ Example: Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ Where $$ - D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\ - H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\ - W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f + D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\ + H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\ + W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 $$ )DOC"); } diff --git a/paddle/operators/conv_transpose_op.h b/paddle/operators/conv_transpose_op.h index a42ade41b165d1bfa00d2db0e45d40cf5d7b00bc..8c0d57afcd21d8622fb6316f7b988d79a45b57fe 100644 --- a/paddle/operators/conv_transpose_op.h +++ b/paddle/operators/conv_transpose_op.h @@ -141,9 +141,9 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> { if (data_dim == 2U) { // col2im: col_matrix -> dy // from (c * k_h * k_w, h * w) to (c, o_h, o_w) - col2im(dev_ctx, col, std::vector<int>{dilations[0], dilations[1]}, - strides, std::vector<int>{paddings[0], paddings[1], paddings[0], - paddings[1]}, + col2im(dev_ctx, col, dilations, strides, + std::vector<int>{paddings[0], paddings[1], paddings[0], + paddings[1]}, &output_batch); } else if (data_dim == 3U) { // col2vol: col_matrix -> dy @@ -247,8 +247,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { if (data_dim == 2U) { // im2col: dy -> col matrix // from (c, o_h, o_w) to (c * k_h * k_w, h * w) - im2col(dev_ctx, output_grad_batch, - std::vector<int>{dilations[0], dilations[1]}, strides, + im2col(dev_ctx, output_grad_batch, dilations, strides, std::vector<int>{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); diff --git a/paddle/operators/nce_op.cc b/paddle/operators/nce_op.cc index 84ba3ead2b52547b989a4541f31ea31ffcce6c63..994ddf717e7a5b883d8071c6a47da0b4b4074f2e 100644 --- a/paddle/operators/nce_op.cc +++ b/paddle/operators/nce_op.cc @@ -124,7 +124,8 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker { "This attribute only be used in unitest. Classes " "in this list wiil be used as negative classes " "for every samples. Under normal conditions, " - "user should avoid setting this attribute."); + "user should avoid setting this attribute.") + .SetDefault({}); AddComment(R"DOC( Compute and return the noise-contrastive estimation training loss. See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). diff --git a/paddle/operators/nce_op.h b/paddle/operators/nce_op.h index e6b496f7896dcb412be8ff096fdccb2f0b682369..86fa13a649ce7fdcaad64e2609ceea2fb4d7e072 100644 --- a/paddle/operators/nce_op.h +++ b/paddle/operators/nce_op.h @@ -197,7 +197,8 @@ class NCEGradKernel : public framework::OpKernel<T> { // get d_x auto d_x = context.Output<Tensor>(framework::GradVarName("Input")); if (d_x != nullptr) { - d_x->mutable_data<T>(context.GetPlace()); + auto* d_x_data = d_x->mutable_data<T>(context.GetPlace()); + std::fill(d_x_data, d_x_data + d_x->numel(), 0.0); auto d_x_matrix = EigenMatrix<T>::From(*d_x); auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight"))); for (int64_t i = 0; i < sample_labels->numel(); ++i) { diff --git a/python/paddle/v2/dataset/wmt16.py b/python/paddle/v2/dataset/wmt16.py index e2f463be2f7bcd667855f64206d78f387e92ef33..c8818f715beadd9499ae588f2c19a57fbf26f372 100644 --- a/python/paddle/v2/dataset/wmt16.py +++ b/python/paddle/v2/dataset/wmt16.py @@ -305,9 +305,9 @@ def get_dict(lang, dict_size, reverse=False): dict_path = os.path.join(paddle.v2.dataset.common.DATA_HOME, "wmt16/%s_%d.dict" % (lang, dict_size)) - assert (os.path.exists(dict_path), "Word dictionary does not exist. " - "Please invoke paddle.dataset.wmt16.train/test/validation " - "first to build the dictionary.") + assert os.path.exists(dict_path), "Word dictionary does not exist. " + "Please invoke paddle.dataset.wmt16.train/test/validation first " + "to build the dictionary." tar_file = os.path.join(paddle.v2.dataset.common.DATA_HOME, "wmt16.tar.gz") return __load_dict(tar_file, dict_size, lang, reverse) diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index bd0404c94d326bd1fff56fec132301c5eae0f10f..99ef6932c9f42140b71cfb63c369e8ea7eac529d 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -19,6 +19,7 @@ from ..layer_helper import LayerHelper from ..initializer import Normal, Constant from ..framework import Variable from ..param_attr import ParamAttr +from layer_function_generator import autodoc from tensor import concat __all__ = [ @@ -58,6 +59,7 @@ __all__ = [ 'sequence_reshape', 'transpose', 'im2sequence', + 'nce', ] @@ -791,8 +793,8 @@ def conv2d(input, <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ . If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. - For each input :math:`X`, the equation is: + For each input :math:`X`, the equation is: .. math:: @@ -800,51 +802,54 @@ def conv2d(input, In the above equation: - * :math:`X`: Input value, a tensor with NCHW format. - * :math:`W`: Filter value, a tensor with MCHW format. - * :math:`\\ast`: Convolution operation. - * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. - * :math:`\\sigma`: Activation function. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: - Input shape: $(N, C_{in}, H_{in}, W_{in})$ + - Input: + + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + + Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ - Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ + - Output: + Output shape: $(N, C_{out}, H_{out}, W_{out})$ - Output: - Output shape: $(N, C_{out}, H_{out}, W_{out})$ Where - .. math:: + + .. math:: H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. Default: stride = 1. - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. Default: padding = 0. - groups(int): The groups number of the Conv2d Layer. According to grouped - convolution in Alex Krizhevsky's Deep CNN paper: when group=2, - the first half of the filters is only connected to the first half - of the input channels, while the second half of the filters is only - connected to the second half of the input channels. Default: groups=1 - param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None - bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None - use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True - act(str): Activation type. Default: None + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + groups(int): The groups number of the Conv2d Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, + the first half of the filters is only connected to the first half + of the input channels, while the second half of the filters is only + connected to the second half of the input channels. Default: groups=1 + param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None + bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + act(str): Activation type. Default: None Returns: Variable: The tensor variable storing the convolution and \ @@ -859,7 +864,6 @@ def conv2d(input, data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") """ - if stride is None: stride = [1, 1] helper = LayerHelper('conv2d', **locals()) @@ -1213,38 +1217,85 @@ def conv2d_transpose(input, use_cudnn=True, name=None): """ - The transpose of conv2d layer. + **Convlution2D transpose layer** + + The convolution2D transpose layer calculates the output based on the input, + filter, and dilations, strides, paddings. Input(Input) and output(Output) + are in NCHW format. Where N is batch size, C is the number of channels, + H is the height of the feature, and W is the width of the feature. + Parameters(dilations, strides, paddings) are two elements. These two elements + represent height and width, respectively. The details of convolution transpose + layer, please refer to the following explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_. + + For each input :math:`X`, the equation is: + + .. math:: + + Out = W \\ast X + + In the above equation: + + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`\\ast` : Convolution transpose operation. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + + Example: + + - Input: + + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + + Filter shape: $(C_{in}, C_{out}, H_f, W_f)$ + + - Output: + + Output shape: $(N, C_{out}, H_{out}, W_{out})$ - This layer is also known as deconvolution layer. + Where + + .. math:: + + H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\ + W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. - output_size(int|tuple|None): The output image size. If output size is a - tuple, it must contain two integers, (image_H, image_W). This - parameter only works when filter_size is None. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. None if use output size to - calculate filter_size - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. - dilation(int|tuple): The dilation size. If dilation is a tuple, it must - contain two integers, (dilation_H, dilation_W). Otherwise, the - dilation_H = dilation_W = dilation. - param_attr: Parameter Attribute. - use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn - library is installed. Default: True - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of the filter. It is as same as the output + image channel. + output_size(int|tuple|None): The output image size. If output size is a + tuple, it must contain two integers, (image_H, image_W). This + parameter only works when filter_size is None. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. None if use output size to + calculate filter_size. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + dilation(int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_H, dilation_W). Otherwise, the + dilation_H = dilation_W = dilation. Default: dilation = 1. + param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer. Default: None + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. Returns: - Variable: Output image. + Variable: The tensor variable storing the convolution transpose result. + + Raises: + ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') + conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) """ helper = LayerHelper("conv2d_transpose", **locals()) if not isinstance(input, Variable): @@ -2142,6 +2193,61 @@ def sequence_reshape(input, new_dim): return out +@autodoc() +def nce(input, + label, + num_total_classes, + sample_weight=None, + param_attr=None, + bias_attr=None, + num_neg_samples=None): + helper = LayerHelper('nce', **locals()) + assert isinstance(input, Variable) + dim = input.shape[1] + assert isinstance(label, Variable) + num_true_class = label.shape[1] + w = helper.create_parameter( + attr=helper.param_attr, + shape=[num_total_classes, dim], + is_bias=False, + dtype=input.dtype) + b = helper.create_parameter( + attr=helper.bias_attr, + shape=[num_total_classes, 1], + is_bias=True, + dtype=input.dtype) + cost = helper.create_tmp_variable(dtype=input.dtype) + sample_logits = helper.create_tmp_variable(dtype=input.dtype) + sample_labels = helper.create_tmp_variable(dtype=label.dtype) + + if num_neg_samples is None: + num_neg_samples = 10 + else: + num_neg_samples = int(num_neg_samples) + + attrs = { + 'num_total_classes': int(num_total_classes), + 'num_neg_samples': num_neg_samples + } + + helper.append_op( + type='nce', + inputs={ + 'Input': input, + 'Label': label, + 'Weight': w, + 'Bias': b, + 'SampleWeight': sample_weight if sample_weight is not None else [] + }, + outputs={ + 'Cost': cost, + 'SampleLogits': sample_logits, + 'SampleLabels': sample_labels + }, + attrs=attrs) + return cost / (num_neg_samples + 1) + + def transpose(x, perm, name=None): """ **transpose Layer** diff --git a/python/paddle/v2/fluid/tests/test_bipartite_match_op.py b/python/paddle/v2/fluid/tests/test_bipartite_match_op.py index 34101b1da46d46d0e7a995ba80d8644dc586065d..74138298978c7c18936f53761b313887f07aea81 100644 --- a/python/paddle/v2/fluid/tests/test_bipartite_match_op.py +++ b/python/paddle/v2/fluid/tests/test_bipartite_match_op.py @@ -16,13 +16,13 @@ import numpy as np from op_test import OpTest -def bipartite_match(distance, match_indices, match_dis): +def bipartite_match(distance, match_indices, match_dist): """Bipartite Matching algorithm. Arg: distance (numpy.array) : The distance of two entries with shape [M, N]. match_indices (numpy.array): the matched indices from column to row with shape [1, N], it must be initialized to -1. - match_dis (numpy.array): The matched distance from column to row + match_dist (numpy.array): The matched distance from column to row with shape [1, N], it must be initialized to 0. """ match_pair = [] @@ -36,13 +36,13 @@ def bipartite_match(distance, match_indices, match_dis): row_indices = -1 * np.ones((row, ), dtype=np.int) idx = 0 - for i, j, dis in match_sorted: + for i, j, dist in match_sorted: if idx >= row: break - if match_indices[j] == -1 and row_indices[i] == -1 and dis > 0: + if match_indices[j] == -1 and row_indices[i] == -1 and dist > 0: match_indices[j] = i row_indices[i] = j - match_dis[j] = dis + match_dist[j] = dist idx += 1 @@ -55,24 +55,24 @@ def batch_bipartite_match(distance, lod): n = len(lod) - 1 m = distance.shape[1] match_indices = -1 * np.ones((n, m), dtype=np.int) - match_dis = np.zeros((n, m), dtype=np.float32) + match_dist = np.zeros((n, m), dtype=np.float32) for i in range(len(lod) - 1): bipartite_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :], - match_dis[i, :]) - return match_indices, match_dis + match_dist[i, :]) + return match_indices, match_dist class TestBipartiteMatchOpForWithLoD(OpTest): def setUp(self): self.op_type = 'bipartite_match' lod = [[0, 5, 11, 23]] - dis = np.random.random((23, 217)).astype('float32') - match_indices, match_dis = batch_bipartite_match(dis, lod[0]) + dist = np.random.random((23, 217)).astype('float32') + match_indices, match_dist = batch_bipartite_match(dist, lod[0]) - self.inputs = {'DistMat': (dis, lod)} + self.inputs = {'DistMat': (dist, lod)} self.outputs = { 'ColToRowMatchIndices': (match_indices), - 'ColToRowMatchDis': (match_dis), + 'ColToRowMatchDis': (match_dist), } def test_check_output(self): @@ -83,13 +83,13 @@ class TestBipartiteMatchOpWithoutLoD(OpTest): def setUp(self): self.op_type = 'bipartite_match' lod = [[0, 8]] - dis = np.random.random((8, 17)).astype('float32') - match_indices, match_dis = batch_bipartite_match(dis, lod[0]) + dist = np.random.random((8, 17)).astype('float32') + match_indices, match_dist = batch_bipartite_match(dist, lod[0]) - self.inputs = {'DistMat': dis} + self.inputs = {'DistMat': dist} self.outputs = { - 'ColToRowMatchIndices': (match_indices), - 'ColToRowMatchDis': (match_dis), + 'ColToRowMatchIndices': match_indices, + 'ColToRowMatchDis': match_dist, } def test_check_output(self): diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py index 58544b2982519f9badbfad97cbd2cd6bf13136e6..8104599e42cc57a48db8be6d8fdb476b39ed39f8 100644 --- a/python/paddle/v2/fluid/tests/test_layers.py +++ b/python/paddle/v2/fluid/tests/test_layers.py @@ -17,8 +17,9 @@ import unittest import paddle.v2.fluid.layers as layers import paddle.v2.fluid.nets as nets -from paddle.v2.fluid.framework import Program, program_guard +from paddle.v2.fluid.framework import Program, program_guard, default_main_program from paddle.v2.fluid.param_attr import ParamAttr +import decorators class TestBook(unittest.TestCase): @@ -235,6 +236,41 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(output) print(str(program)) + @decorators.prog_scope() + def test_nce(self): + window_size = 5 + words = [] + for i in xrange(window_size): + words.append( + layers.data( + name='word_{0}'.format(i), shape=[1], dtype='int64')) + + dict_size = 10000 + label_word = int(window_size / 2) + 1 + + embs = [] + for i in xrange(window_size): + if i == label_word: + continue + + emb = layers.embedding( + input=words[i], + size=[dict_size, 32], + param_attr='emb.w', + is_sparse=True) + + embs.append(emb) + + embs = layers.concat(input=embs, axis=1) + loss = layers.nce(input=embs, + label=words[label_word], + num_total_classes=dict_size, + param_attr='nce.w', + bias_attr='nce.b') + avg_loss = layers.mean(x=loss) + self.assertIsNotNone(avg_loss) + print(str(default_main_program())) + if __name__ == '__main__': unittest.main()