Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1e6e5ac6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
1e6e5ac6
编写于
1月 15, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unit test
上级
f5cd9619
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
214 addition
and
0 deletion
+214
-0
python/paddle/v2/fluid/tests/test_elementwise_max_op.py
python/paddle/v2/fluid/tests/test_elementwise_max_op.py
+107
-0
python/paddle/v2/fluid/tests/test_elementwise_min_op.py
python/paddle/v2/fluid/tests/test_elementwise_min_op.py
+107
-0
未找到文件。
python/paddle/v2/fluid/tests/test_elementwise_max_op.py
0 → 100644
浏览文件 @
1e6e5ac6
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestElementwiseOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.005
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
random
((
32
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
32
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
32
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
2
,
1
,
1
))
}
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
3
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
3
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
3
,
1
))
}
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
4
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
4
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
4
))
}
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
3
,
4
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
3
,
4
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
3
,
4
,
1
))
}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/fluid/tests/test_elementwise_min_op.py
0 → 100644
浏览文件 @
1e6e5ac6
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestElementwiseOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.005
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random
((
32
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
32
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
32
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
2
,
1
,
1
))
}
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
3
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
3
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
3
,
1
))
}
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
4
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
4
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
4
))
}
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
3
,
4
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
3
,
4
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
3
,
4
,
1
))
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录