diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 0dde33813fdb9e942406e0b9949f26a36fb1dbf1..62c96f8f5fe1ac550aa9f4e4fbb1d81af8f5b3be 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -121,6 +121,7 @@ paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs= paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)) paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False)) +paddle.fluid.layers.sampled_softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'num_samples', 'num_true', 'remove_accidental_hits', 'use_customized_samples', 'customized_samples', 'customized_probabilities', 'seed'], varargs=None, keywords=None, defaults=(1, True, False, None, None, 0)) paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False)) paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False)) paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 2166b8b545c23025e029d283b7ca43719e31a259..a3f2a69aef52b6f55aa09e6dee2c22c048626c0d 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -66,7 +66,7 @@ set(COMMON_OP_DEPS ${OP_HEADER_DEPS}) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} dynload_warpctc) -set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler tree2col) +set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler sample_prob tree2col) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions beam_search) if (WITH_GPU) set(COMMON_OP_DEPS ${COMMON_OP_DEPS} depthwise_conv prelu) diff --git a/paddle/fluid/operators/math/CMakeLists.txt b/paddle/fluid/operators/math/CMakeLists.txt index 4b6eef18d8b967af5f3a5df0dee750620e7e412a..d4837696241b8c4e3cca4f2afe872c6be559853c 100644 --- a/paddle/fluid/operators/math/CMakeLists.txt +++ b/paddle/fluid/operators/math/CMakeLists.txt @@ -39,6 +39,7 @@ math_library(cross_entropy) math_library(cos_sim_functor) math_library(depthwise_conv DEPS cub) math_library(im2col) +math_library(sample_prob) math_library(sampler) math_library(gru_compute DEPS activation_functions math_function) diff --git a/paddle/fluid/operators/math/sample_prob.cc b/paddle/fluid/operators/math/sample_prob.cc new file mode 100644 index 0000000000000000000000000000000000000000..99aa318453eae161807353198a78e11085cd6237 --- /dev/null +++ b/paddle/fluid/operators/math/sample_prob.cc @@ -0,0 +1,26 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/math/sample_prob.h" + +namespace paddle { +namespace operators { +namespace math { + +template class SampleWithProb; +template class SampleWithProb; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/math/sample_prob.cu b/paddle/fluid/operators/math/sample_prob.cu new file mode 100644 index 0000000000000000000000000000000000000000..8f9391591560cc3f76ac67f43121c4b1cff90e12 --- /dev/null +++ b/paddle/fluid/operators/math/sample_prob.cu @@ -0,0 +1,161 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include +#include + +#include "paddle/fluid/framework/ddim.h" +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/operators/math/math_function.h" +#include "paddle/fluid/operators/math/sample_prob.h" +#include "paddle/fluid/operators/math/sampler.h" + +namespace paddle { +namespace operators { +namespace math { + +using Tensor = framework::Tensor; + +template +__device__ T gpu_adjust_prob(const T prob, const int num_samples, + const int num_tries) { + if (num_samples == num_tries) { + return prob * num_samples; + } else { + return -expm1(num_tries * log1p(-prob)); + } +} + +class GPULogUniformSampler { + public: + __device__ int64_t Sample(float random, const int range, + const float log_range) const; + __device__ float Probability(int64_t value, const float log_range) const; +}; + +__device__ int64_t GPULogUniformSampler::Sample(float random, const int range, + const float log_range) const { + // Got Log Uniform distribution from uniform distribution by + // inverse_transform_sampling method + const int64_t value = static_cast(exp(random * log_range)) - 1; + // Mathematically, value should be <= range_, but might not be due to some + // floating point roundoff, so we mod by range_. + return value % range; +} + +__device__ float GPULogUniformSampler::Probability( + int64_t value, const float log_range) const { + // Given f(x) = 1/[(x+1) * log_range_] + // The value's probability is integral of f(x) from value to (value + 1) + return (log((value + 2.0) / (value + 1.0))) / log_range; +} + +template +__global__ void SamplingCondidate( + const size_t n, const int num_tries, const int range, const float log_range, + const int num_true, const std::size_t num_samples, + const int64_t* label_data, int64_t* samples_data, T* probabilities_data) { + const int num_sampled_classes = num_true + num_samples; + + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int step_size = 0; + GPULogUniformSampler sampler; + + for (; idx < n; idx += blockDim.x * gridDim.x) { + int col_idx = idx % num_sampled_classes; + int row_idx = idx / num_sampled_classes; + if (col_idx < num_true) { + samples_data[idx] = label_data[row_idx * num_true + col_idx]; + } else { + samples_data[idx] = samples_data[col_idx]; + } + probabilities_data[idx] = sampler.Probability(samples_data[idx], log_range); + probabilities_data[idx] = + gpu_adjust_prob(probabilities_data[idx], num_samples, num_tries); + } +} + +template +int UniqSampler(const Sampler& sampler, const std::size_t num_samples, + int64_t* samples_data) { + // sample num_samles unique samples for an example, note that they are not + // all negative samples + std::unordered_set tmp_samples; + tmp_samples.clear(); + int num_tries = 0; + int j = 0; + while (j < num_samples) { + ++num_tries; + auto v = sampler.Sample(); + auto insert_ok = tmp_samples.insert(v).second; + if (!insert_ok) { + continue; + } + samples_data[j] = v; + ++j; + } + return num_tries; +} + +template +void GPUSampleWithProb::operator()( + const platform::CUDADeviceContext& context, const int seed, + const int dict_size, const bool uniq, const std::size_t num_samples, + const Tensor* L, Tensor* S, Tensor* P) { + // UNDERSTAND: dimension issues + const auto lbl_dim = L->dims(); + const int batch_size = lbl_dim[0]; + const int num_true = lbl_dim[1]; + const int num_sampled_classes = num_true + num_samples; + framework::DDim ret_dim{batch_size, num_sampled_classes}; + + // UNDERSTAND: raw data view + const int64_t* label_data = L->data(); + int64_t* samples_data = S->data(); + T* probabilities_data = P->data(); + + int s_size = num_samples; + framework::DDim s_dim{s_size}; + Tensor s; + int64_t* s_data = s.mutable_data(s_dim, platform::CPUPlace()); + + math::LogUniformSampler sampler(dict_size, seed); + + int range = dict_size; + float log_range = log(range + 1); + + int num_tries = UniqSampler(sampler, num_samples, s_data); + VLOG(1) << "num_tries: " << num_tries; + PADDLE_ENFORCE(cudaMemcpy(samples_data + num_true, s_data, + sizeof(int64_t) * num_samples, + cudaMemcpyHostToDevice)); + + int threads = 512; + const size_t size = batch_size * num_sampled_classes; + int grid = (batch_size * num_sampled_classes + threads - 1) / threads; + SamplingCondidate<<>>( + size, num_tries, range, log_range, num_true, num_samples, label_data, + samples_data, probabilities_data); +} + +template class GPUSampleWithProb; +template class GPUSampleWithProb; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/math/sample_prob.h b/paddle/fluid/operators/math/sample_prob.h new file mode 100644 index 0000000000000000000000000000000000000000..e5a6d84cb2b0527c606e62a19ef02d669945ecb1 --- /dev/null +++ b/paddle/fluid/operators/math/sample_prob.h @@ -0,0 +1,118 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include +#include "paddle/fluid/framework/ddim.h" +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/operators/math/sampler.h" + +namespace paddle { +namespace operators { +namespace math { + +using Tensor = framework::Tensor; + +/* UNDERSTAND: utility function to adjust probability for unique sampling, +return whatever as it is if not using unique samping */ +template +static T adjust_prob(const T prob, const int num_samples, const int num_tries) { + if (num_samples == num_tries) { + return prob * num_samples; + } else { + return -expm1(num_tries * log1p(-prob)); + } +} + +template +class SampleWithProb { + public: + void operator()(const DeviceContext& context, const Sampler& sampler, + const std::size_t num_samples, const Tensor* L, Tensor* S, + Tensor* P) { + // UNDERSTAND: dimension issues + const auto lbl_dim = L->dims(); + const int batch_size = lbl_dim[0]; + const int num_true = lbl_dim[1]; + const int num_sampled_classes = num_true + num_samples; + framework::DDim ret_dim{batch_size, num_sampled_classes}; + + // UNDERSTAND: raw data view + const int64_t* label_data = L->data(); + int64_t* samples_data = + S->mutable_data(ret_dim, context.GetPlace()); + T* probabilities_data = P->mutable_data(ret_dim, context.GetPlace()); + + // temp sets for unique sampling + std::unordered_set tmp_samples; + int j = 0; // column index + // add true labels, not that efficient + while (j < num_true) { + for (int i = 0; i < batch_size; ++i) { + auto samples_index = i * num_sampled_classes + j; + auto v = label_data[i * num_true + j]; + samples_data[samples_index] = v; + probabilities_data[samples_index] = sampler.Probability(v); + } + ++j; + } + + // sample num_samles unique samples for an example, note that they are not + // all negative samples + tmp_samples.clear(); + int num_tries = 0; + while (j < num_sampled_classes) { + ++num_tries; + auto v = sampler.Sample(); + auto insert_ok = tmp_samples.insert(v).second; + if (!insert_ok) { + continue; + } + auto p = sampler.Probability(v); + for (int i = 0; i < batch_size; ++i) { + auto samples_index = i * num_sampled_classes + j; + samples_data[samples_index] = v; + probabilities_data[samples_index] = p; + } + ++j; + } + + // compute Q(y|x), because of unique sampling, probabilities need to be + // adjusted + for (int k = 0; k < num_sampled_classes; ++k) { + for (int i = 0; i < batch_size; ++i) { + auto samples_index = i * num_sampled_classes + k; + probabilities_data[samples_index] = adjust_prob( + probabilities_data[samples_index], num_samples, num_tries); + } + } + } +}; + +#ifdef PADDLE_WITH_CUDA +template +class GPUSampleWithProb { + public: + void operator()(const platform::CUDADeviceContext& context, const int seed, + const int dict_size, const bool uniq, + const std::size_t num_samples, const Tensor* L, Tensor* S, + Tensor* P); +}; +#endif +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/sample_logits_op.cc b/paddle/fluid/operators/sample_logits_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a7f7fb26b17c77e6fe87646d3cac20c02c49b52c --- /dev/null +++ b/paddle/fluid/operators/sample_logits_op.cc @@ -0,0 +1,225 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/sample_logits_op.h" +#include "paddle/fluid/operators/math/sample_prob.h" + +namespace paddle { +namespace operators { + +class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("Logits", + "(Tensor, default: Tensor), The unscaled log probabilities " + "which is a 2-D tensor with shape [N x K]. N is the batch_size, " + "and K is the class number."); + AddInput("Labels", + "(Tensor) The ground truth which is a 2-D tensor. Labels is a " + "Tensor with shape [N x NT], where NT is the number of" + "true labels for each example."); + AddInput("CustomizedSamples", + "(Tensor, default: Tensor), A 2-D tensor with shape [N, " + "NT + S]," + " where N is the batch size, NT is the number of true labels " + "and S is the number of negtive sample for each example." + "The first NT elements of each row should be the same with true " + "labels, " + "followed by S custom negtive samples. This tensor" + "is only used when use_customized_samples is true.") + .AsDispensable(); + AddInput( + "CustomizedProbabilities", + "(Tensor, default: Tensor), A 2-D tensor with shape [N, NT + S]." + "The tensor has the same shape with CustomSamples," + "and each element represents probability of element in CustomSamples. " + "This " + "tensor is only used when use_customized_samples is true.") + .AsDispensable(); + AddOutput("Samples", + "(Tensor, default: Tensor), A 2-D tensor with shape [N, " + "NT + S]." + "The outputs value of sampler, including NT true lables and S " + "negetive samples " + "for each example. This will be used in" + "backward calculation.") + .AsIntermediate(); + AddOutput( + "Probabilities", + "(Tensor, default: Tensor), A 2-D tensor with shape [N, NT + S]." + "The probabilites of sampled positive and negtive labels.") + .AsIntermediate(); + AddOutput("SampledLogits", + "(Tensor, default: Tensor), A 2-D tensor with shape" + "[N, NT + S]. The outputs value of sampled logits, which will be" + "used in backward propagation.") + .AsIntermediate(); + AddOutput( + "SampledLabels", + "(Tensor, default: Tensor), A 2-D tensor. The sampled labels" + "with shape [N, NT]. The tonsor contains hard labels as input to " + " softmax op, that is 0, 1, ..., NT-1 because of the first NT elements" + " of Sampels are positive lables."); + AddAttr( + "use_customized_samples", + "An indicator whether to use customized samples with probabilities, if " + "True" + "the operator will use customized samples and customized probabilities" + "otherwise, the operator will generate them by itself.") + .SetDefault(false); + AddAttr( + "uniq", + "An indicator whether to sample non-repetitive negtive labels, if True" + "the operator will sample negtive labels without replacement." + "Otherwise, the operator will sample negtive labels with replacement.") + .SetDefault(true); + AddAttr( + "remove_accidental_hits", + "An indicator whether to remove accidental hits when samples hits true" + "labels, the removal is implemented by subtracting the corresponding" + "logits by float_max to subpress their softmax to be zero.") + .SetDefault(true); + AddAttr("num_samples", "The number of negative samples."); + AddAttr("seed", "Random seed for generating samples").SetDefault(0); + + AddComment(R"DOC( + """ + Computes sampled output training logits and labels suitable for implementing + sampled softmax. + """ + +)DOC"); + } +}; + +class SampleLogitsOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) should be not null."); + + PADDLE_ENFORCE(ctx->HasOutput("Samples"), + "Output(Samples) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("Probabilities"), + "Output(Probabilities) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"), + "Output(SampledLogits) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("SampledLabels"), + "Output(SampledLabels) should be not null."); + + auto logits_dims = ctx->GetInputDim("Logits"); + auto labels_dims = ctx->GetInputDim("Labels"); + + PADDLE_ENFORCE_EQ( + logits_dims.size(), 2UL, + "The logits of softmax_with_cross_entropy should be a 2-D tensor."); + PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL, + "The labels should be a 2-D tensor."); + + const int num_samples = ctx->Attrs().Get("num_samples"); + const int num_sampled_classes = labels_dims[1] + num_samples; + ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes}); + ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes}); + ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes}); + ctx->SetOutputDim("SampledLabels", {logits_dims[0], labels_dims[1]}); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits")); + framework::OpKernelType kt = + framework::OpKernelType(data_type, ctx.device_context()); + return kt; + } +}; + +// UNDERSTAND: InferShape for Grad +class SampleLogitsOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Samples"), + "Input(Samples) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("SampledLogits"), + "Input(SampledLogits) should be not null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")), + "Input(SampledLogits@Grad) should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), + "Output(Logits@Grad) should be not null."); + + auto logit_dims = ctx->GetInputDim("Logits"); + auto label_dims = ctx->GetInputDim("Labels"); + PADDLE_ENFORCE_EQ(label_dims.size(), 2UL, + "The label should be a 2-D tensor."); + PADDLE_ENFORCE_EQ(logit_dims.size(), 2UL, + "The logits should be a 2-D tensor."); + + ctx->SetOutputDim(framework::GradVarName("Logits"), + ctx->GetInputDim("Logits")); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + auto data_type = framework::GetDataTypeOfVar( + ctx.InputVar(framework::GradVarName("SampledLogits"))); + framework::OpKernelType kt = + framework::OpKernelType(data_type, ctx.device_context()); + return kt; + } +}; + +// UNDERSTAND: what's the rule for making a GradMaker TODO +class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDesc(); + grad_op->SetType("sample_logits_grad"); + grad_op->SetInput("Logits", Input("Logits")); + grad_op->SetInput("Labels", Input("Labels")); + grad_op->SetInput("Samples", Output("Samples")); + grad_op->SetInput("SampledLogits", Output("SampledLogits")); + grad_op->SetInput(framework::GradVarName("SampledLogits"), + OutputGrad("SampledLogits")); + grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker, + ops::SampleLogitsGradMaker); +REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad); +REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel, + ops::SampleLogitsKernel); +REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel, + ops::SampleLogitsGradKernel); diff --git a/paddle/fluid/operators/sample_logits_op.cu b/paddle/fluid/operators/sample_logits_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..fb49793b730f72d66dc846f233bd95ebdab37c52 --- /dev/null +++ b/paddle/fluid/operators/sample_logits_op.cu @@ -0,0 +1,257 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/tensor_util.h" +#include "paddle/fluid/operators/math/math_function.h" +#include "paddle/fluid/operators/math/sample_prob.h" +#include "paddle/fluid/operators/math/softmax.h" +#include "paddle/fluid/operators/sample_logits_op.h" + +namespace paddle { +namespace operators { + +// UNDERSTAND: something like take_along_axis in numpy. +template +__global__ void GPUTakeAlongD1(size_t size, const int batch_size, + const int array_slice_size, + const int idx_slice_size, const T* p_array, + const int64_t* p_index, T* p_value) { + const auto value_slice_size = idx_slice_size; + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int step_size = blockDim.x * gridDim.x; + + for (; idx < size; idx += step_size) { + int i = idx / idx_slice_size; + auto array_index = p_index[idx]; + p_value[idx] = p_array[i * array_slice_size + array_index]; + } +} + +// UNDERSTAND: something like put_along_axis in numpy but if there is duplicate +// indices, scatter is done in += way. +template +__global__ void GPUPutAlongD1(size_t size, const int batch_size, + const int array_slice_size, + const int idx_slice_size, T* p_array, + const int64_t* p_index, const T* p_value) { + const auto value_slice_size = idx_slice_size; + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int step_size = blockDim.x * gridDim.x; + + // size == batch_size + for (; idx < size; idx += step_size) { + int i = idx; + for (int j = 0; j < idx_slice_size; ++j) { + auto array_index = p_index[i * idx_slice_size + j]; + p_array[i * array_slice_size + array_index] += + p_value[i * idx_slice_size + j]; + } + } +} + +// UNDERSTAND: set label as 0,1,...,num_true-1 +template +__global__ void GPUSetLabel(size_t size, const int num_true, int64_t* p_array) { + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int step_size = blockDim.x * gridDim.x; + + for (; idx < size; idx += step_size) { + p_array[idx] = idx % num_true; + } +} + +// UNDERSTAND: compute accidentdal hits from samples and minus corresponding +// logits by a float max, here 1e20 +template +__global__ void gpu_compute_remove_accidental_hits(const int size, + const int num_true, + const int idx_slice_size, + const int64_t* p_index, + T* p_value) { + const auto value_slice_size = idx_slice_size; + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int step_size = blockDim.x * gridDim.x; + + for (; idx < size; idx += step_size) { + int i = idx / idx_slice_size; + if (idx % idx_slice_size < num_true) continue; + for (int j = 0; j < num_true; ++j) { + const auto true_idx = i * idx_slice_size + j; + if (p_index[true_idx] == p_index[idx]) { + p_value[idx] -= 1e20; + break; + } + } + } +} + +template +class SampleLogitsCUDAKernel : public framework::OpKernel { + public: + using Tensor = framework::Tensor; + void Compute(const framework::ExecutionContext& context) const override { + // get necessary inputs + const Tensor* logits = context.Input("Logits"); + const Tensor* labels = context.Input("Labels"); + VLOG(3) << "Enter SampleLogitsCUDAKernel"; + + // get necessary outputs + Tensor* samples = context.Output("Samples"); + Tensor* probabilities = context.Output("Probabilities"); + Tensor* sampled_logits = context.Output("SampledLogits"); + Tensor* sampled_labels = context.Output("SampledLabels"); + + // shapes + const auto batch_size = logits->dims()[0]; + const auto num_classes = logits->dims()[1]; + const auto labels_dim = labels->dims(); + const auto num_true = labels_dim[1]; + const auto samples_dim = samples->dims(); + + // attrs + const auto num_samples = context.Attr("num_samples"); + const bool use_customized_samples = + context.Attr("use_customized_samples"); + const bool uniq = context.Attr("uniq"); + const bool remove_accidental_hits = + context.Attr("remove_accidental_hits"); + + // device contexts + auto& dev_ctx = context.cuda_device_context(); + + // UNDERSTAND: allocate memories for temporaries + sampled_logits->mutable_data(samples_dim, context.GetPlace()); + math::SetConstant set_zero; + set_zero(dev_ctx, sampled_logits, static_cast(0)); + + auto sampled_labels_data = + sampled_labels->mutable_data(labels_dim, context.GetPlace()); + int threads = 512; + size_t size = batch_size * num_true; + int grid = (size + threads - 1) / threads; + GPUSetLabel< + T><<>>( + size, num_true, sampled_labels_data); + + if (use_customized_samples) { + const Tensor* customized_samples = + context.Input("CustomizedSamples"); + const Tensor* customized_probabilities = + context.Input("CustomizedProbabilities"); + samples->ShareDataWith(*customized_samples); + probabilities->ShareDataWith(*customized_probabilities); + } else { + samples->mutable_data(context.GetPlace()); + probabilities->mutable_data(samples_dim, context.GetPlace()); + // UNDERSTAND: sampling + const auto seed = context.Attr("seed"); + auto sampler_with_prob = math::GPUSampleWithProb(); + sampler_with_prob(context.cuda_device_context(), seed, num_classes, uniq, + num_samples, labels, samples, probabilities); + } + + // UNDERSTAND: gather sampled logits and remove accidental hits if needed + const auto num_take = samples->dims()[1]; + const auto array_dims = logits->dims(); + const auto idx_dims = samples->dims(); + + const T* p_array = logits->data(); + const int64_t* p_index = samples->data(); + T* p_value = sampled_logits->data(); + + // src slice size + const auto array_slice_size = array_dims[1]; + // index slice size + const auto idx_slice_size = idx_dims[1]; + + size = batch_size * num_take; + grid = (size + threads - 1) / threads; + GPUTakeAlongD1< + T><<>>( + size, batch_size, array_slice_size, idx_slice_size, p_array, p_index, + p_value); + + if (remove_accidental_hits) { + const size_t size = batch_size * (num_true + num_samples); + int grid = (size + threads - 1) / threads; + gpu_compute_remove_accidental_hits< + T><<>>( + size, num_true, idx_slice_size, p_index, p_value); + } + + // subtracted sampled logits with logQ(y|x) + auto probs = EigenMatrix::From(*probabilities); + auto smp_logits = EigenMatrix::From(*sampled_logits); + smp_logits.device(*dev_ctx.eigen_device()) = + (smp_logits - probs.log().unaryExpr(TolerableValue())) + .unaryExpr(TolerableValue()); + } +}; + +template +class SampleLogitsGradCUDAKernel : public framework::OpKernel { + public: + using Tensor = framework::Tensor; + void Compute(const framework::ExecutionContext& context) const override { + auto logits_grad = context.Output(framework::GradVarName("Logits")); + const Tensor* samples = context.Input("Samples"); + const Tensor* sampled_logits_grad = + context.Input(framework::GradVarName("SampledLogits")); + logits_grad->mutable_data(context.GetPlace()); + + auto& dev_ctx = context.cuda_device_context(); + math::SetConstant set_zero; + set_zero(dev_ctx, logits_grad, static_cast(0)); + + // UNDERSTAND: scatter it back to logit_grad + const auto batch_size = samples->dims()[0]; + const auto num_put = samples->dims()[1]; + const auto array_dims = logits_grad->dims(); + const auto idx_dims = samples->dims(); + + T* p_array = logits_grad->data(); + const int64_t* p_index = samples->data(); + const T* p_value = sampled_logits_grad->data(); + + // src slice size + const auto array_slice_size = array_dims[1]; + // index slice size + const auto idx_slice_size = idx_dims[1]; + + int threads = 128; + const size_t size = batch_size; + int grid = (size + threads - 1) / threads; + + GPUPutAlongD1< + T><<>>( + size, batch_size, array_slice_size, idx_slice_size, p_array, p_index, + p_value); + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL(sample_logits, ops::SampleLogitsCUDAKernel, + ops::SampleLogitsCUDAKernel); +REGISTER_OP_CUDA_KERNEL(sample_logits_grad, + ops::SampleLogitsGradCUDAKernel, + ops::SampleLogitsGradCUDAKernel); diff --git a/paddle/fluid/operators/sample_logits_op.h b/paddle/fluid/operators/sample_logits_op.h new file mode 100644 index 0000000000000000000000000000000000000000..b55a24863cc09d5f80e07aedbbb5b3d9ac99e69e --- /dev/null +++ b/paddle/fluid/operators/sample_logits_op.h @@ -0,0 +1,245 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/tensor_util.h" +#include "paddle/fluid/operators/math/math_function.h" +#include "paddle/fluid/operators/math/sample_prob.h" +#include "paddle/fluid/operators/math/softmax.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +struct TolerableValue { + HOSTDEVICE T operator()(const T& x) const { + PADDLE_ASSERT(std::is_floating_point::value); + const T kApproInf = 1e20; + if (x == INFINITY) return kApproInf; + if (x == -INFINITY) return -kApproInf; + return x; + } +}; + +// UNDERSTAND: something like take_along_axis in numpy. +template +static void CPUTakeAlongD1(const platform::DeviceContext& ctx, + const framework::Tensor& array, + const framework::Tensor& index, + framework::Tensor* value) { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace())); + // UNDERSTAND: check shape src(B, C), index(B, K), out should also be (B, K) + PADDLE_ENFORCE(index.dims().size() == 2 && array.dims().size() == 2 && + index.dims()[0] == array.dims()[0] && + index.dims() == value->dims()); + + const auto batch_size = index.dims()[0]; + const auto num_take = index.dims()[1]; + const auto array_dims = array.dims(); + const auto idx_dims = index.dims(); + + // UNDERSTAND: no allocations here + const T* p_array = array.data(); + const int64_t* p_index = index.data(); + T* p_value = value->data(); + + // src slice size + const auto array_slice_size = array_dims[1]; + + // index slice size + const auto idx_slice_size = idx_dims[1]; + const auto value_slice_size = idx_slice_size; + + for (int i = 0; i < batch_size; ++i) { + for (int j = 0; j < num_take; ++j) { + auto array_index = p_index[i * idx_slice_size + j]; + p_value[i * value_slice_size + j] = + p_array[i * array_slice_size + array_index]; + } + } +} + +// UNDERSTAND: something like put_along_axis in numpy but if there is duplicate +// indices, scatter is done in += way. +template +static void CPUPutAlongD1(const platform::DeviceContext& ctx, + framework::Tensor* array, + const framework::Tensor& index, + const framework::Tensor& value) { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace())); + // UNDERSTAND: check shape src(B, C), index(B, K), out should also be (B, K) + PADDLE_ENFORCE(index.dims().size() == 2 && array->dims().size() == 2 && + index.dims()[0] == array->dims()[0] && + index.dims() == value.dims()); + const auto batch_size = index.dims()[0]; + const auto num_put = index.dims()[1]; + auto array_dims = array->dims(); + auto idx_dims = index.dims(); + + // UNDERSTAND: no allocations here + T* p_array = array->data(); + const int64_t* p_index = index.data(); + const T* p_value = value.data(); + + // slice sizes + const auto array_slice_size = array_dims[1]; + const auto idx_slice_size = idx_dims[1]; + const auto value_slice_size = idx_slice_size; + + for (int i = 0; i < batch_size; ++i) { + for (int j = 0; j < num_put; ++j) { + auto array_index = p_index[i * idx_slice_size + j]; + p_array[i * array_slice_size + array_index] += + p_value[i * value_slice_size + j]; + } + } +} + +// UNDERSTAND: compute accidentdal hits from samples and minus corresponding +// logits by a float max, here 1e20 +template +static void compute_remove_accidental_hits(const platform::DeviceContext& ctx, + framework::Tensor* sampled_logits, + const framework::Tensor& samples, + const int num_true) { + const auto batch_size = sampled_logits->dims()[0]; + const auto num_sampled_classes = sampled_logits->dims()[1]; + T* sampled_logits_data = sampled_logits->data(); + const auto samples_data = samples.data(); + + std::unordered_set tmp_true_labels; + for (int i = 0; i < batch_size; ++i) { + tmp_true_labels.clear(); + tmp_true_labels.insert(samples_data + i * num_sampled_classes, + samples_data + i * num_sampled_classes + num_true); + for (int j = num_true; j < num_sampled_classes; ++j) { + const auto idx = i * num_sampled_classes + j; + if (tmp_true_labels.find(samples_data[idx]) != tmp_true_labels.end()) + sampled_logits_data[idx] -= 1e20; + } + } +} + +template +class SampleLogitsKernel : public framework::OpKernel { + public: + using Tensor = framework::Tensor; + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()), + "This kernel only runs on CPU."); + VLOG(3) << "Enter SampleLogitsKernel"; + // get necessary inputs + const Tensor* logits = context.Input("Logits"); + const Tensor* labels = context.Input("Labels"); + + // get necessary outputs + Tensor* samples = context.Output("Samples"); + Tensor* probabilities = context.Output("Probabilities"); + Tensor* sampled_logits = context.Output("SampledLogits"); + Tensor* sampled_labels = context.Output("SampledLabels"); + + // shapes + const auto batch_size = logits->dims()[0]; + const auto num_classes = logits->dims()[1]; + const auto labels_dim = labels->dims(); + const auto num_true = labels_dim[1]; + const auto samples_dim = samples->dims(); + + // attrs + const auto num_samples = context.Attr("num_samples"); + const bool use_customized_samples = + context.Attr("use_customized_samples"); + const bool remove_accidental_hits = + context.Attr("remove_accidental_hits"); + + // device contexts + auto& dev_ctx = + context.template device_context(); + + // UNDERSTAND: allocate memories for temporaries + sampled_logits->mutable_data(samples_dim, context.GetPlace()); + auto sampled_labels_data = + sampled_labels->mutable_data(labels_dim, context.GetPlace()); + for (int i = 0; i < batch_size; ++i) { + for (int j = 0; j < num_true; ++j) { + sampled_labels_data[i * num_true + j] = j; + } + } + + if (use_customized_samples) { + const Tensor* customized_samples = + context.Input("CustomizedSamples"); + const Tensor* customized_probabilities = + context.Input("CustomizedProbabilities"); + samples->ShareDataWith(*customized_samples); + probabilities->ShareDataWith(*customized_probabilities); + } else { + samples->mutable_data(context.GetPlace()); + probabilities->mutable_data(samples_dim, context.GetPlace()); + // UNDERSTAND: sampling + const auto seed = context.Attr("seed"); + auto sampler_with_prob = + math::SampleWithProb(); + sampler_with_prob(dev_ctx, math::LogUniformSampler(num_classes, seed), + num_samples, labels, samples, probabilities); + } + + // UNDERSTAND: gather sampled logits and remove accidental hits if needed + CPUTakeAlongD1(dev_ctx, *logits, *samples, sampled_logits); + if (remove_accidental_hits) { + compute_remove_accidental_hits(dev_ctx, sampled_logits, *samples, + num_true); + } + + // subtracted sampled logits with logQ(y|x) + auto probs = EigenMatrix::From(*probabilities); + auto smp_logits = EigenMatrix::From(*sampled_logits); + smp_logits.device(*dev_ctx.eigen_device()) = + (smp_logits - probs.log().unaryExpr(TolerableValue())) + .unaryExpr(TolerableValue()); + } +}; + +template +class SampleLogitsGradKernel : public framework::OpKernel { + public: + using Tensor = framework::Tensor; + void Compute(const framework::ExecutionContext& context) const override { + auto logits_grad = context.Output(framework::GradVarName("Logits")); + const Tensor* samples = context.Input("Samples"); + const Tensor* sampled_logits_grad = + context.Input(framework::GradVarName("SampledLogits")); + logits_grad->mutable_data(context.GetPlace()); + + auto& dev_ctx = + context.template device_context(); + math::SetConstant set_zero; + set_zero(dev_ctx, logits_grad, static_cast(0)); + + // UNDERSTAND: scatter it back to logit_grad + CPUPutAlongD1(dev_ctx, logits_grad, *samples, *sampled_logits_grad); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index d7690f48d8162fcaeb4d8f80bbad13854c4f6bbb..0845c9bd88889921c42a71687ca2c9e03f6613eb 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -87,6 +87,7 @@ __all__ = [ 'transpose', 'im2sequence', 'nce', + 'sampled_softmax_with_cross_entropy', 'hsigmoid', 'beam_search', 'row_conv', @@ -5840,6 +5841,124 @@ def softmax_with_cross_entropy(logits, return loss +def sampled_softmax_with_cross_entropy(logits, + label, + num_samples, + num_true=1, + remove_accidental_hits=True, + use_customized_samples=False, + customized_samples=None, + customized_probabilities=None, + seed=0): + """ + **Sampled Softmax With Cross Entropy Operator.** + + Cross entropy loss with sampled softmax is used as the output layer for + larger output classes extensively. This operator samples a number of samples + for all examples, and computes the softmax normalized values for each + row of the sampled tensor, after which cross-entropy loss is computed. + + Because this operator performs a softmax on logits internally, it expects + unscaled logits. This operator should not be used with the output of + softmax operator since that would produce incorrect results. + + For examples with T true labels (T >= 1), we assume that each true label has + a probability of 1/T. For each sample, S samples are generated using a + log uniform distribution. True labels are concatenated with these samples to + form T + S samples for each example. So, assume the shape of logits is + [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a + probability is calculated, which corresponds to the Q(y|x) in + [Jean et al., 2014](http://arxiv.org/abs/1412.2007). + + Logits are sampled according to the sampled labels. Then if + remove_accidental_hits is True, if a sample[i, j] accidentally hits true + labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to + make its softmax result close to zero. Then sampled logits are subtracted by + logQ(y|x), these sampled logits and re-indexed labels are used to compute + a softmax with cross entropy. + + Args: + logits (Variable): The unscaled log probabilities, which is a 2-D tensor + with shape [N x K]. N is the batch_size, and K is the class number. + label (Variable): The ground truth which is a 2-D tensor. Label is a + Tensor with shape [N x T], where T is the number of true + labels per example. + num_samples (int): The number for each example, num_samples should be + less than the number of class. + num_true(int): The number of target classes per training example. + remove_accidental_hits (bool): A flag indicating whether to remove + accidental hits when sampling. If True and if a sample[i, j] + accidentally hits true labels, then the corresponding + sampled_logits[i, j] is minus by 1e20 to make its softmax result + close to zero. Default is True. + use_customized_samples (bool): Whether to use custom samples and probabities to sample + logits. + customized_samples (Variable): User defined samples, which is a 2-D tensor + with shape [N, T + S]. S is the num_samples, and T is the number of true + labels per example. + customized_probabilities (Variable): User defined probabilities of samples, + a 2-D tensor which has the same shape with customized_samples. + seed (int): The random seed for generating random number, which is used + in the process of sampling. Default is 0. + + Returns: + Variable: Return the cross entropy loss which is a 2-D tensor with shape + [N x 1]. + + Examples: + .. code-block:: python + + logits = fluid.layers.data(name='data', shape=[256], dtype='float32') + label = fluid.layers.data(name='label', shape=[5], dtype='int64') + fc = fluid.layers.fc(input=data, size=100) + out = fluid.layers.sampled_softmax_with_cross_entropy( + logits=fc, label=label, num_samples=25) + """ + helper = LayerHelper('sample_logits', **locals()) + samples = helper.create_variable_for_type_inference(dtype='int64') + probabilities = helper.create_variable_for_type_inference( + dtype=logits.dtype) + sampled_logits \ + = helper.create_variable_for_type_inference(dtype=logits.dtype) + sampled_label = helper.create_variable_for_type_inference(dtype='int64') + + helper.append_op( + type='sample_logits', + inputs={ + 'Logits': logits, + 'Labels': label, + 'CustomizedSamples': customized_samples, + 'CustomizedProbabilities': customized_probabilities + }, + outputs={ + 'Samples': samples, + 'Probabilities': probabilities, + 'SampledLabels': sampled_label, + 'SampledLogits': sampled_logits + }, + attrs={ + 'use_customized_samples': use_customized_samples, + 'uniq': True, + 'remove_accidental_hits': remove_accidental_hits, + 'num_samples': num_samples, + 'seed': seed + }) + loss = helper.create_variable_for_type_inference(dtype=logits.dtype) + softmax = helper.create_variable_for_type_inference(dtype=logits.dtype) + helper.append_op( + type='softmax_with_cross_entropy', + inputs={'Logits': sampled_logits, + 'Label': sampled_label}, + outputs={'Softmax': softmax, + 'Loss': loss}, + attrs={ + 'soft_label': False, + 'ignore_index': False, + 'numeric_stable_mode': False + }) + return loss / num_true + + def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): """ This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`. diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index e7bc1601a54c8615e0e787d74145aa4987b6cb88..30194f8cacfea2361ffe4afe537287a261cf470b 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -374,6 +374,17 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(output) print(str(program)) + def test_sampled_softmax_with_cross_entropy(self): + program = Program() + with program_guard(program): + logits = layers.data(name='Logits', shape=[256], dtype='float64') + label = layers.data(name='Label', shape=[1], dtype='int64') + num_samples = 25 + output = layers.sampled_softmax_with_cross_entropy(logits, label, + num_samples) + self.assertIsNotNone(output) + print(str(program)) + @decorators.prog_scope() def test_nce(self): window_size = 5