提交 1d0fbed1 编写于 作者: T Travis CI

Deploy to GitHub Pages: 2c806f7e

上级 51a74460
# Design Doc: Functions, Operators, and Layers
In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator.
Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation.
In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions:
```c++
template <typename T> T add(T x, T y) { return x + y; }
template <typename T> T mul(T x, T y) { return x * y; }
```
Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation
```c++
#define MAKE_FUNCTION_OPERATOR(mul);
```
generates
```c++
template <typename T> class mulOp : public OperatorBase {...};
REGISTER_OP(mulOp<float32>, "mul");
```
so that in Python we can create operator mul by:
```python
X1 = Var()
X2 = Var()
Y = Var()
paddle.cpp.create_operator("mul", input=[X1, X2], output=Y)
```
Also, at the same time, we can compose a coarse level C++ operator class by composing functions `mul` and `add`:
```c++
template <typename T>
class FCOp : public OperatorBase {
public:
void Run(...) {
add(mul(Input<T>("X"), Input<T>("W")), Input<T>("b");
}
};
REGISTER_OP(FCOp, "fc");
```
We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than `paddle.cpp.create_operator`. This higher level operator API should be compatible with the layer API.
Let's explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we'd like to have Python functions `mul` and `add` defined in module `operator`:
```python
def operator.mul(X1, X2):
O = Var()
paddle.cpp.create_operator("mul", input={X1, Y1], output=O)
return O
def operator.add(X1, X2):
O = Var()
paddle.cpp.create_operator("add", input={X1, X2], output=O)
return O
```
Above code snippets are automatically generated. Given them, users can define
```python
def layer.fc(X):
W = Var()
b = Var()
return operator.add(operator.mul(X, W), b)
```
If we don't have `operator.mul` and `operator.add`, the definiton of `layer.fc` would be complicated:
```python
def layer.fc(X):
W = Var()
b = Var()
O1 = Var()
paddle.cpp.create_operator("mul", input=[X, W], output=O1)
O2 = Var()
paddle.cpp.create_operator("add", input=[O1, b], output=O2)
return O2
```
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
```
| C++ functions/functors | mul | add | | |
| C++ operator class | mulOp | addOp | FCOp | |
| Python binding | operator.mul | operator.add | operator.fc | |
| Python function | | | | layer.fc |
```
This is how we differentiate layer and operators in PaddlePaddle:
- those defined in C++ and have a lightweighted Python wrapper in module `operators` are operators; whereas
- those who don't have C++ implementations but a Python implementation that compose C++ operators are known as layers.
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Functions, Operators, and Layers &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../genindex.html"/>
<link rel="search" title="Search" href="../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Functions, Operators, and Layers</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-functions-operators-and-layers">
<span id="design-doc-functions-operators-and-layers"></span><h1>Design Doc: Functions, Operators, and Layers<a class="headerlink" href="#design-doc-functions-operators-and-layers" title="Permalink to this headline"></a></h1>
<p>In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator.</p>
<p>Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation.</p>
<p>In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">add</span><span class="p">(</span><span class="n">T</span> <span class="n">x</span><span class="p">,</span> <span class="n">T</span> <span class="n">y</span><span class="p">)</span> <span class="p">{</span> <span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span> <span class="p">}</span>
<span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">mul</span><span class="p">(</span><span class="n">T</span> <span class="n">x</span><span class="p">,</span> <span class="n">T</span> <span class="n">y</span><span class="p">)</span> <span class="p">{</span> <span class="k">return</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span><span class="p">;</span> <span class="p">}</span>
</pre></div>
</div>
<p>Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="cp">#define MAKE_FUNCTION_OPERATOR(mul);</span>
</pre></div>
</div>
<p>generates</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="k">class</span> <span class="nc">mulOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">OperatorBase</span> <span class="p">{...};</span>
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">mulOp</span><span class="o">&lt;</span><span class="n">float32</span><span class="o">&gt;</span><span class="p">,</span> <span class="s">&quot;mul&quot;</span><span class="p">);</span>
</pre></div>
</div>
<p>so that in Python we can create operator mul by:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">X1</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">X2</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">Y</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">Y</span><span class="p">)</span>
</pre></div>
</div>
<p>Also, at the same time, we can compose a coarse level C++ operator class by composing functions <code class="docutils literal"><span class="pre">mul</span></code> and <code class="docutils literal"><span class="pre">add</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">FCOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">OperatorBase</span> <span class="p">{</span>
<span class="k">public</span><span class="o">:</span>
<span class="kt">void</span> <span class="n">Run</span><span class="p">(...)</span> <span class="p">{</span>
<span class="n">add</span><span class="p">(</span><span class="n">mul</span><span class="p">(</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">),</span> <span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;W&quot;</span><span class="p">)),</span> <span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;b&quot;</span><span class="p">);</span>
<span class="p">}</span>
<span class="p">};</span>
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">FCOp</span><span class="p">,</span> <span class="s">&quot;fc&quot;</span><span class="p">);</span>
</pre></div>
</div>
<p>We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than <code class="docutils literal"><span class="pre">paddle.cpp.create_operator</span></code>. This higher level operator API should be compatible with the layer API.</p>
<p>Let&#8217;s explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we&#8217;d like to have Python functions <code class="docutils literal"><span class="pre">mul</span></code> and <code class="docutils literal"><span class="pre">add</span></code> defined in module <code class="docutils literal"><span class="pre">operator</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">operator</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="n">O</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">{</span><span class="n">X1</span><span class="p">,</span> <span class="n">Y1</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O</span>
<span class="k">def</span> <span class="nf">operator</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="n">O</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;add&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">{</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O</span>
</pre></div>
</div>
<p>Above code snippets are automatically generated. Given them, users can define</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="k">return</span> <span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">),</span> <span class="n">b</span><span class="p">)</span>
</pre></div>
</div>
<p>If we don&#8217;t have <code class="docutils literal"><span class="pre">operator.mul</span></code> and <code class="docutils literal"><span class="pre">operator.add</span></code>, the definiton of <code class="docutils literal"><span class="pre">layer.fc</span></code> would be complicated:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">O1</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O1</span><span class="p">)</span>
<span class="n">O2</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;add&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">O1</span><span class="p">,</span> <span class="n">b</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O2</span>
</pre></div>
</div>
<p>We&#8217;d like to have Python bindings to operators in package <code class="docutils literal"><span class="pre">paddle.operator</span></code>, and Python compositions of operators in package <code class="docutils literal"><span class="pre">paddle.layer</span></code>. So we have the following concepts in above illustrative example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>| C++ functions/functors | mul | add | | |
| C++ operator class | mulOp | addOp | FCOp | |
| Python binding | operator.mul | operator.add | operator.fc | |
| Python function | | | | layer.fc |
</pre></div>
</div>
<p>This is how we differentiate layer and operators in PaddlePaddle:</p>
<ul class="simple">
<li>those defined in C++ and have a lightweighted Python wrapper in module <code class="docutils literal"><span class="pre">operators</span></code> are operators; whereas</li>
<li>those who don&#8217;t have C++ implementations but a Python implementation that compose C++ operators are known as layers.</li>
</ul>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
# Design Doc: Functions, Operators, and Layers
In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator.
Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation.
In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions:
```c++
template <typename T> T add(T x, T y) { return x + y; }
template <typename T> T mul(T x, T y) { return x * y; }
```
Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation
```c++
#define MAKE_FUNCTION_OPERATOR(mul);
```
generates
```c++
template <typename T> class mulOp : public OperatorBase {...};
REGISTER_OP(mulOp<float32>, "mul");
```
so that in Python we can create operator mul by:
```python
X1 = Var()
X2 = Var()
Y = Var()
paddle.cpp.create_operator("mul", input=[X1, X2], output=Y)
```
Also, at the same time, we can compose a coarse level C++ operator class by composing functions `mul` and `add`:
```c++
template <typename T>
class FCOp : public OperatorBase {
public:
void Run(...) {
add(mul(Input<T>("X"), Input<T>("W")), Input<T>("b");
}
};
REGISTER_OP(FCOp, "fc");
```
We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than `paddle.cpp.create_operator`. This higher level operator API should be compatible with the layer API.
Let's explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we'd like to have Python functions `mul` and `add` defined in module `operator`:
```python
def operator.mul(X1, X2):
O = Var()
paddle.cpp.create_operator("mul", input={X1, Y1], output=O)
return O
def operator.add(X1, X2):
O = Var()
paddle.cpp.create_operator("add", input={X1, X2], output=O)
return O
```
Above code snippets are automatically generated. Given them, users can define
```python
def layer.fc(X):
W = Var()
b = Var()
return operator.add(operator.mul(X, W), b)
```
If we don't have `operator.mul` and `operator.add`, the definiton of `layer.fc` would be complicated:
```python
def layer.fc(X):
W = Var()
b = Var()
O1 = Var()
paddle.cpp.create_operator("mul", input=[X, W], output=O1)
O2 = Var()
paddle.cpp.create_operator("add", input=[O1, b], output=O2)
return O2
```
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
```
| C++ functions/functors | mul | add | | |
| C++ operator class | mulOp | addOp | FCOp | |
| Python binding | operator.mul | operator.add | operator.fc | |
| Python function | | | | layer.fc |
```
This is how we differentiate layer and operators in PaddlePaddle:
- those defined in C++ and have a lightweighted Python wrapper in module `operators` are operators; whereas
- those who don't have C++ implementations but a Python implementation that compose C++ operators are known as layers.
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Functions, Operators, and Layers &mdash; PaddlePaddle 文档</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="索引"
href="../genindex.html"/>
<link rel="search" title="搜索" href="../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Functions, Operators, and Layers</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-functions-operators-and-layers">
<span id="design-doc-functions-operators-and-layers"></span><h1>Design Doc: Functions, Operators, and Layers<a class="headerlink" href="#design-doc-functions-operators-and-layers" title="永久链接至标题"></a></h1>
<p>In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator.</p>
<p>Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation.</p>
<p>In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">add</span><span class="p">(</span><span class="n">T</span> <span class="n">x</span><span class="p">,</span> <span class="n">T</span> <span class="n">y</span><span class="p">)</span> <span class="p">{</span> <span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span> <span class="p">}</span>
<span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">T</span> <span class="n">mul</span><span class="p">(</span><span class="n">T</span> <span class="n">x</span><span class="p">,</span> <span class="n">T</span> <span class="n">y</span><span class="p">)</span> <span class="p">{</span> <span class="k">return</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span><span class="p">;</span> <span class="p">}</span>
</pre></div>
</div>
<p>Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="cp">#define MAKE_FUNCTION_OPERATOR(mul);</span>
</pre></div>
</div>
<p>generates</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="k">class</span> <span class="nc">mulOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">OperatorBase</span> <span class="p">{...};</span>
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">mulOp</span><span class="o">&lt;</span><span class="n">float32</span><span class="o">&gt;</span><span class="p">,</span> <span class="s">&quot;mul&quot;</span><span class="p">);</span>
</pre></div>
</div>
<p>so that in Python we can create operator mul by:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">X1</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">X2</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">Y</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">Y</span><span class="p">)</span>
</pre></div>
</div>
<p>Also, at the same time, we can compose a coarse level C++ operator class by composing functions <code class="docutils literal"><span class="pre">mul</span></code> and <code class="docutils literal"><span class="pre">add</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">FCOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">OperatorBase</span> <span class="p">{</span>
<span class="k">public</span><span class="o">:</span>
<span class="kt">void</span> <span class="n">Run</span><span class="p">(...)</span> <span class="p">{</span>
<span class="n">add</span><span class="p">(</span><span class="n">mul</span><span class="p">(</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">),</span> <span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;W&quot;</span><span class="p">)),</span> <span class="n">Input</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;b&quot;</span><span class="p">);</span>
<span class="p">}</span>
<span class="p">};</span>
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">FCOp</span><span class="p">,</span> <span class="s">&quot;fc&quot;</span><span class="p">);</span>
</pre></div>
</div>
<p>We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than <code class="docutils literal"><span class="pre">paddle.cpp.create_operator</span></code>. This higher level operator API should be compatible with the layer API.</p>
<p>Let&#8217;s explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we&#8217;d like to have Python functions <code class="docutils literal"><span class="pre">mul</span></code> and <code class="docutils literal"><span class="pre">add</span></code> defined in module <code class="docutils literal"><span class="pre">operator</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">operator</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="n">O</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">{</span><span class="n">X1</span><span class="p">,</span> <span class="n">Y1</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O</span>
<span class="k">def</span> <span class="nf">operator</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="n">O</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;add&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">{</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O</span>
</pre></div>
</div>
<p>Above code snippets are automatically generated. Given them, users can define</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="k">return</span> <span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">),</span> <span class="n">b</span><span class="p">)</span>
</pre></div>
</div>
<p>If we don&#8217;t have <code class="docutils literal"><span class="pre">operator.mul</span></code> and <code class="docutils literal"><span class="pre">operator.add</span></code>, the definiton of <code class="docutils literal"><span class="pre">layer.fc</span></code> would be complicated:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">O1</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O1</span><span class="p">)</span>
<span class="n">O2</span> <span class="o">=</span> <span class="n">Var</span><span class="p">()</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">cpp</span><span class="o">.</span><span class="n">create_operator</span><span class="p">(</span><span class="s2">&quot;add&quot;</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">O1</span><span class="p">,</span> <span class="n">b</span><span class="p">],</span> <span class="n">output</span><span class="o">=</span><span class="n">O2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">O2</span>
</pre></div>
</div>
<p>We&#8217;d like to have Python bindings to operators in package <code class="docutils literal"><span class="pre">paddle.operator</span></code>, and Python compositions of operators in package <code class="docutils literal"><span class="pre">paddle.layer</span></code>. So we have the following concepts in above illustrative example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>| C++ functions/functors | mul | add | | |
| C++ operator class | mulOp | addOp | FCOp | |
| Python binding | operator.mul | operator.add | operator.fc | |
| Python function | | | | layer.fc |
</pre></div>
</div>
<p>This is how we differentiate layer and operators in PaddlePaddle:</p>
<ul class="simple">
<li>those defined in C++ and have a lightweighted Python wrapper in module <code class="docutils literal"><span class="pre">operators</span></code> are operators; whereas</li>
<li>those who don&#8217;t have C++ implementations but a Python implementation that compose C++ operators are known as layers.</li>
</ul>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/translations.js"></script>
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册