提交 1c9fc655 编写于 作者: Q qiaolongfei

update

上级 e2783bb6
......@@ -603,7 +603,7 @@ def prior_box(input,
offset=0.5,
name=None):
"""
**Prior box operator**
**Prior Box Operator**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
......@@ -632,12 +632,15 @@ def prior_box(input,
name(str): Name of the prior box op. Default: None.
Returns:
boxes(Variable): the output prior boxes of PriorBox.
tuple: A tuple with two Variable (boxes, variances)
boxes: the output prior boxes of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
Variances(Variable): the expanded variances of PriorBox.
variances: the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total
......@@ -646,7 +649,8 @@ def prior_box(input,
Examples:
.. code-block:: python
box, var = prior_box(
box, var = fluid.layers.prior_box(
input=conv1,
image=images,
min_sizes=[100.],
......@@ -721,11 +725,9 @@ def multi_box_head(inputs,
stride=1,
name=None):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
<https://arxiv.org/abs/1512.02325>`_ .
Args:
......@@ -766,24 +768,27 @@ def multi_box_head(inputs,
name(str): Name of the prior box layer. Default: None.
Returns:
mbox_loc(Variable): The predicted boxes' location of the inputs.
The layout is [N, H*W*Priors, 4]. where Priors
is the number of predicted boxes each position of each input.
mbox_conf(Variable): The predicted boxes' confidence of the inputs.
The layout is [N, H*W*Priors, C]. where Priors
is the number of predicted boxes each position of each input
and C is the number of Classes.
boxes(Variable): the output prior boxes of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)
mbox_loc: The predicted boxes' location of the inputs. The layout
is [N, H*W*Priors, 4]. where Priors is the number of predicted
boxes each position of each input.
mbox_conf: The predicted boxes' confidence of the inputs. The layout
is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
each position of each input and C is the number of Classes.
boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
num_priors is the total box count of each position of inputs.
variances: the expanded variances of PriorBox. The layout is
[num_priors, 4]. num_priors is the total box count of each position of inputs
Examples:
.. code-block:: python
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
num_classes=21,
......
......@@ -163,8 +163,6 @@ def polynomial_decay(learning_rate,
power=1.0,
cycle=False):
"""
**Polynomial Decay**
Applies polynomial decay to the initial learning rate.
.. code-block:: python
......@@ -178,14 +176,14 @@ def polynomial_decay(learning_rate,
Args:
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
will be the initial learning rate during training
will be the initial learning rate during training.
decay_steps(int32): A Python `int32` number.
end_learning_rate(float, Default: 0.0001): A Python `float` number.
power(float, Default: 1.0): A Python `float` number
cycle(bool, Default: False): Boolean. If set true, decay the learning rate every decay_steps.
end_learning_rate(float): A Python `float` number.
power(float): A Python `float` number.
cycle(bool): If set true, decay the learning rate every decay_steps.
Returns:
The decayed learning rate
Variable: The decayed learning rate
"""
global_step = _decay_step_counter()
......
......@@ -40,14 +40,14 @@ __all__ = [
def create_tensor(dtype, name=None, persistable=False):
"""
**Create a Tensor**
Create an variable, which will hold a LoDTensor with data type dtype.
Args:
dtype (string): 'float32'|'int32'|..., the data type of the
dtype(string): 'float32'|'int32'|..., the data type of the
created tensor.
name (string, Default: None): The name of the created tensor, if not set,
name(string): The name of the created tensor, if not set,
the name will be a random unique one.
persistable (bool, Default: False): Set the persistable flag of the create tensor.
persistable(bool): Set the persistable flag of the create tensor.
Returns:
Variable: The tensor variable storing the created tensor.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册