未验证 提交 1957192f 编写于 作者: H Huihuang Zheng 提交者: GitHub

Add select_input_op and select_output_op (#21016)

These ops are useful in control flow.
上级 fc02c299
......@@ -107,6 +107,7 @@ set(COMMON_OP_DEPS ${COMMON_OP_DEPS} layer)
set(OPERATOR_DEPS ${OPERATOR_DEPS} ${COMMON_OP_DEPS})
set(GLOB_OPERATOR_DEPS ${OPERATOR_DEPS} CACHE INTERNAL "Global Op dependencies")
cc_test(assign_op_test SRCS assign_op_test.cc DEPS assign_op)
cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor math_function)
cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor)
......
......@@ -12,59 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/assign_op.h"
#include <memory>
#include <string>
namespace paddle {
namespace operators {
class AssignFunctor {
public:
AssignFunctor(framework::Variable *out,
const platform::DeviceContext &dev_ctx)
: out_(out), dev_ctx_(dev_ctx) {}
void operator()(const framework::LoDTensor &lod_tensor) const {
auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
copy_tensor(lod_tensor, &out_tensor);
}
void operator()(const framework::LoDTensorArray &array) const {
auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
out_array.resize(array.size());
for (size_t i = 0; i < array.size(); ++i) {
copy_tensor(array[i], &out_array[i]);
}
}
void operator()(const framework::SelectedRows &rows) const {
framework::SelectedRows &out_rows =
*out_->GetMutable<framework::SelectedRows>();
out_rows.set_rows(rows.rows());
out_rows.set_height(rows.height());
auto &t = rows.value();
auto *m = out_rows.mutable_value();
framework::TensorCopy(t, t.place(), dev_ctx_, m);
}
template <typename T>
void operator()(const T &v) const {
PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
}
private:
void copy_tensor(const framework::LoDTensor &lod_tensor,
framework::LoDTensor *out) const {
if (lod_tensor.numel() == 0) return;
auto &out_tensor = *out;
TensorCopy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor);
out_tensor.set_lod(lod_tensor.lod());
}
framework::Variable *out_;
const platform::DeviceContext &dev_ctx_;
};
class AssignOp : public framework::OperatorWithKernel {
public:
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
class AssignFunctor {
public:
AssignFunctor(framework::Variable *out,
const platform::DeviceContext &dev_ctx)
: out_(out), dev_ctx_(dev_ctx) {}
void operator()(const framework::LoDTensor &lod_tensor) const {
auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
copy_tensor(lod_tensor, &out_tensor);
}
void operator()(const framework::LoDTensorArray &array) const {
auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
out_array.resize(array.size());
for (size_t i = 0; i < array.size(); ++i) {
copy_tensor(array[i], &out_array[i]);
}
}
void operator()(const framework::SelectedRows &rows) const {
framework::SelectedRows &out_rows =
*out_->GetMutable<framework::SelectedRows>();
out_rows.set_rows(rows.rows());
out_rows.set_height(rows.height());
auto &t = rows.value();
auto *m = out_rows.mutable_value();
framework::TensorCopy(t, t.place(), dev_ctx_, m);
}
template <typename T>
void operator()(const T &v) const {
PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
}
private:
void copy_tensor(const framework::LoDTensor &lod_tensor,
framework::LoDTensor *out) const {
if (lod_tensor.numel() == 0) return;
auto &out_tensor = *out;
TensorCopy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor);
out_tensor.set_lod(lod_tensor.lod());
}
framework::Variable *out_;
const platform::DeviceContext &dev_ctx_;
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/assign_op.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/place.h"
TEST(AssignOp, AssignLoDTensor) {
paddle::platform::CPUPlace cpu_place;
paddle::platform::CPUDeviceContext ctx(cpu_place);
paddle::framework::Variable output;
paddle::operators::AssignFunctor assign_functor(&output, ctx);
paddle::framework::LoDTensor input;
paddle::framework::DDim in_dims = paddle::framework::make_ddim({3, 4});
int* in_data = input.mutable_data<int>(in_dims, cpu_place);
for (int i = 0; i < 12; ++i) {
in_data[i] = i;
}
assign_functor(input);
auto& out_tensor = output.Get<paddle::framework::LoDTensor>();
paddle::framework::DDim out_dims = out_tensor.dims();
EXPECT_EQ(in_dims, out_dims);
auto* out_data = out_tensor.data<int>();
for (int i = 0; i < 12; ++i) {
EXPECT_EQ(i, out_data[i]);
}
}
TEST(AssignOp, AssignLoDTensorArray) {
paddle::platform::CPUPlace cpu_place;
paddle::platform::CPUDeviceContext ctx(cpu_place);
paddle::framework::Variable output;
paddle::operators::AssignFunctor assign_functor(&output, ctx);
paddle::framework::LoDTensorArray input;
for (int i = 0; i < 5; ++i) {
paddle::framework::DDim in_dims =
paddle::framework::make_ddim({i + 1, i + 2});
paddle::framework::LoDTensor lod_tensor;
float* in_data = lod_tensor.mutable_data<float>(in_dims, cpu_place);
for (int j = 0; j < (i + 1) * (i + 2); ++j) {
in_data[j] = static_cast<float>(j);
}
input.push_back(lod_tensor);
}
assign_functor(input);
auto& out_array = output.Get<paddle::framework::LoDTensorArray>();
for (int i = 0; i < 5; ++i) {
paddle::framework::DDim out_dims = out_array[i].dims();
EXPECT_EQ(paddle::framework::make_ddim({i + 1, i + 2}), out_dims);
const float* out_data = out_array[i].data<float>();
for (int j = 0; j < (i + 1) * (i + 2); ++j) {
EXPECT_EQ(static_cast<float>(j), out_data[j]);
}
}
}
TEST(AssignOp, AssignSelectedRows) {
paddle::platform::CPUPlace cpu_place;
paddle::platform::CPUDeviceContext ctx(cpu_place);
paddle::framework::Variable output;
paddle::operators::AssignFunctor assign_functor(&output, ctx);
std::vector<int64_t> rows{0, 4, 7};
int64_t height = 10;
paddle::framework::SelectedRows input(rows, height);
paddle::framework::Tensor* input_tensor = input.mutable_value();
paddle::framework::DDim in_dims = paddle::framework::make_ddim({3, 4});
int* in_data = input_tensor->mutable_data<int>(in_dims, cpu_place);
for (int i = 0; i < 12; ++i) {
in_data[i] = i;
}
assign_functor(input);
auto& out_selected_row = output.Get<paddle::framework::SelectedRows>();
const paddle::framework::Vector<int64_t>& out_rows = out_selected_row.rows();
EXPECT_EQ(rows.size(), out_rows.size());
for (size_t i = 0; i < rows.size(); ++i) {
EXPECT_EQ(rows[i], out_rows[i]);
}
EXPECT_EQ(height, out_selected_row.height());
const paddle::framework::Tensor& out_tensor = out_selected_row.value();
paddle::framework::DDim out_dims = out_tensor.dims();
EXPECT_EQ(in_dims, out_dims);
auto* out_data = out_tensor.data<int>();
for (int i = 0; i < 12; ++i) {
EXPECT_EQ(i, out_data[i]);
}
}
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/assign_op.h"
#include "paddle/fluid/operators/select_op_helper.h"
namespace paddle {
namespace operators {
// SelectInputOp takes multiple inputs and uses an integer mask to select
// one input to output. It is used in control flow.
class SelectInputOp : public framework::OperatorBase {
public:
SelectInputOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
size_t output_branch = static_cast<size_t>(GetBranchNumber(mask));
const std::vector<std::string> &x_names = Inputs("X");
PADDLE_ENFORCE_LT(output_branch, x_names.size(),
"Selected branch number is greater than actual branch "
"num in SelectInputOp");
const framework::Variable *selected_x =
scope.FindVar(x_names[output_branch]);
framework::Variable *out = scope.FindVar(Output("Out"));
framework::VisitVarType(*selected_x, AssignFunctor(out, dev_ctx));
}
};
class SelectInputOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input LoDTensors or LoDTensorArray or SelectedRows. All "
"inputs must have same variable type")
.AsDuplicable();
AddInput("Mask",
"A integer tensor with numel 1 specifying which input to output");
AddOutput(
"Out",
"The merged output. The variable type of output must be same as X");
// TODO(huihuangzheng): decide whether to add support for lod level
// Because this op is blocking whole control flow. I am implementing MVP
// (minimal viable product) here.
AddComment(R"DOC(
Merge branches of LoDTensor into a single Output with a mask interger
specifying the output branchi.
)DOC");
}
};
class SelectInputInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE_EQ(context->HasInputs("X"), true,
"SelectInputOp must have input X.");
PADDLE_ENFORCE_EQ(context->HasInput("Mask"), true,
"SelectInputOp must have input Mask.");
PADDLE_ENFORCE_EQ(context->HasOutput("Out"), true,
"SelectInputOp must have output Out.");
}
};
template <typename T>
class SelectInputGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
std::unique_ptr<T> Apply() const override {
auto *grad_op = new T();
grad_op->SetType("select_output");
grad_op->SetInput("X", this->OutputGrad("Out"));
grad_op->SetInput("Mask", this->Input("Mask"));
grad_op->SetOutput("Out",
this->InputGrad("X", /* drop_empty_grad */ false));
grad_op->SetAttrMap(this->Attrs());
return std::unique_ptr<T>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(select_input, ops::SelectInputOp,
ops::SelectInputOpProtoMaker, ops::SelectInputInferShape,
ops::SelectInputGradMaker<paddle::framework::OpDesc>,
ops::SelectInputGradMaker<paddle::imperative::OpBase>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
// Functions used in SelectInputOp and SelectOutputOp
namespace paddle {
namespace operators {
// Returns the integer in mask whose numel must be 1. The integer means the
// selected branch number.
inline int GetBranchNumber(const framework::LoDTensor &mask) {
PADDLE_ENFORCE_EQ(mask.numel(), 1,
"Mask in SelectOutputOp must have numel 1.");
if (platform::is_cpu_place(mask.place())) {
return mask.data<int>()[0];
}
// when platform::is_gpu_place(mask.place()) is ture
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
#ifdef PADDLE_WITH_CUDA
framework::TensorCopySync(mask, platform::CPUPlace(), cpu_mask.get());
#else
PADDLE_THROW(
"This version of PaddlePaddle doen NOT support GPU but got GPU tensor "
"Mask in SelectOutputOp. Please compile WITH_GPU option");
#endif
return cpu_mask->data<int>()[0];
}
} // namespace operators
} // namespace paddle
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/assign_op.h"
#include "paddle/fluid/operators/select_op_helper.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
// SelectOutputOp has one input, one integer mask and multiple outputs. It
// selects one output specified by the mask and copy the input to it.
class SelectOutputOp : public framework::OperatorBase {
public:
SelectOutputOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
size_t output_branch = static_cast<size_t>(GetBranchNumber(mask));
const std::vector<std::string> &out_names = Outputs("Out");
PADDLE_ENFORCE_LT(output_branch, out_names.size(),
"Selected branch number is greater than actual branch "
"num in SelectOutputOp");
const framework::Variable *x = scope.FindVar(Input("X"));
framework::Variable *selected_out = scope.FindVar(out_names[output_branch]);
framework::VisitVarType(*x, AssignFunctor(selected_out, dev_ctx));
}
};
class SelectOutputOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input LoDTensor or LoDTensorArray or SelectedRows.");
AddInput("Mask", "Tensor with numel 1 specifying which branch to output");
AddOutput("Out",
"The output can contains multiple variables. The output of "
"selected branch will be same as input. We do nothing for "
"variables in other branch")
.AsDuplicable();
// TODO(huihuangzheng): decide whether to add support for lod level
// Because this op is blocking whole control flow. I am implementing MVP
// (minimal viable product) here.
AddComment(R"DOC(
Split input variable into one output branch. The mask is an integer tensor to
specify which output branch should copy the input.
)DOC");
}
};
class SelectOutputInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE_EQ(context->HasInput("X"), true,
"SelectOutputOp must have input X.");
PADDLE_ENFORCE_EQ(context->HasInput("Mask"), true,
"SelectOutputOp must have input Mask.");
PADDLE_ENFORCE_EQ(context->HasOutputs("Out"), true,
"SelectOutputOp must have output Out.");
}
};
template <typename T>
class SelectOutputGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
std::unique_ptr<T> Apply() const override {
auto *grad_op = new T();
grad_op->SetType("select_input");
grad_op->SetInput("Mask", this->Input("Mask"));
grad_op->SetInput("X", this->OutputGrad("Out"));
grad_op->SetOutput("Out", this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
return std::unique_ptr<T>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(select_output, ops::SelectOutputOp,
ops::SelectOutputOpProtoMaker, ops::SelectOutputInferShape,
ops::SelectOutputGradMaker<paddle::framework::OpDesc>,
ops::SelectOutputGradMaker<paddle::imperative::OpBase>);
......@@ -35,6 +35,60 @@ __all__ = [
]
def select_output(input, outputs, mask):
"""
**select_output**
This API takes in one input and multiple outputs and an integer mask. It
selects the output specified by the mask and copy the input to selected
output. It is useful in control flow.
Args:
input(Variable): The input variable
outputs(tuple|list): The output variables
mask(Variable): A tensor containing 1 integer number selecting which
output to be copied with input
Returns:
Variable: The outputs variables
"""
helper = LayerHelper('select_output', **locals())
helper.append_op(
type='select_output',
inputs={'X': input,
'Mask': mask},
outputs={'Out': outputs})
return outputs
def select_input(inputs, mask):
"""
**select_input**
This API takes in multiple inputs and uses an integer mask to select one
input to output. It is useful in control flow.
Args:
inputs(tuple|list): The input variables
mask(Variable): A tensor containing 1 integer number selecting which
input to output
Returns:
Variable: The selected input variable
"""
helper = LayerHelper('select_input', **locals())
if isinstance(inputs, list) or isinstance(inputs, tuple):
input_dtype = inputs[0].dtype
else:
input_dtype = inputs.dtype
out = helper.create_variable(dtype=input_dtype)
helper.append_op(
type='select_input',
inputs={'X': inputs,
'Mask': mask},
outputs={'Out': out})
return out
def split_lod_tensor(input, mask, level=0):
"""
This function takes in an input that contains the complete lod information,
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.layers.control_flow import select_input, select_output
class TestSplitMergeSelectedVarOps(unittest.TestCase):
def test_forward_backward(self):
branch_num = 9
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[2], dtype='float32')
x.stop_gradient = False # For test gradient
mask = layers.data(name='mask', shape=[1], dtype='int32')
outputs = []
for i in range(branch_num):
out = program.current_block().create_var(
dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
outputs.append(out)
select_output(x, outputs, mask)
y = select_input(outputs, mask)
mean = layers.mean(y)
append_backward(mean)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = Executor(place)
feed_x = np.asarray([1.3, -1.4]).astype(np.float32)
for i in range(branch_num):
feed_mask = np.asarray([i]).astype(np.int32)
ret = exe.run(program,
feed={'x': feed_x,
'mask': feed_mask},
fetch_list=[y.name, x.grad_name])
x_grad = np.asarray([0.5, 0.5]).astype(np.float32)
self.assertTrue(np.allclose(np.asarray(ret[0]), feed_x))
self.assertTrue(np.allclose(np.asarray(ret[1]), x_grad))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部