Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
15b35f9a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15b35f9a
编写于
10月 04, 2017
作者:
H
helinwang
提交者:
GitHub
10月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3993 from helinwang/session
Design Doc: Session
上级
473ca534
a9e298be
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
180 addition
and
0 deletion
+180
-0
doc/design/refactor/session.md
doc/design/refactor/session.md
+180
-0
未找到文件。
doc/design/refactor/session.md
0 → 100644
浏览文件 @
15b35f9a
# Design Doc: Session
## Abstract
The
*session*
object encapsulates the environment in which the
computation graph is executed.
We will have the
*local*
session and
*remote*
session, they offer the
same
[
interface
](
#interface
)
. The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime environment.
The local runtime environment contains:
1.
computation devices (i.e., CPU, GPU) handles, and
1.
the
[
scope
](
../scope.md
)
which holds all variables.
The remote runtime environment contains:
1.
computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and
1.
the distributed
[
scope
](
../scope.md
)
in a cluster which holds all
variables.
The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.
## Background
The current design has an implicit global session in which
`paddle.eval()`
is executed. The pain point is:
Since the user is not able to explicitly switch between runtime
environments, the user cannot run a topology in two independent
environments.
For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.
Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.
We need the session object to address above issues.
## Session
A session is an object that owns the runtime environment. All
computations are executed through
`session.eval()`
.
### Interface
```
python
eval
(
targets
,
feed_dict
=
None
,
)
```
Evaluates the target Operations or Variables in
`targets`
.
-
*targets*
: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as
elements. The value returned by
`eval()`
has the same shape as the
`target`
argument.
The PaddlePaddle program is represented by
the
[
ProgramDesc
](
../design/program.md
)
,
`eval()`
will infer the
ProgramDesc from the given targets and run the PaddlePaddle
program. Please
see
[
this graph
](
./distributed_architecture.md#local-training-architecture
)
for
the detailed illustration for the local session
and
[
this graph
](
./distributed_architecture.md#distributed-training-architecture
)
for
the detailed illustration for the remote session.
-
*feed_dict*
: a dictionary that contains the tensors which override
the edges of the computation graph.
feed_dict not only can provide the input data, it can override any
OP's input as well:
```
python
a
=
pd
.
constant
(
2.0
,
name
=
"a"
)
b
=
pd
.
variable
(
name
=
"b"
)
c
=
pd
.
mul
(
a
,
b
)
sess
.
eval
(
targets
=
c
,
feed_dict
=
{
"b"
:
3.0
})
# returns 6.0
```
```
python
close
()
```
Closes the session and releases the scope that the session owns.
### Create a Local Session
```
python
session
(
devices
=
None
)
```
Creates a new session. One session owns one global scope, so creating
multiple sessions will create different scopes.
-
*devices*
: a single
`string`
or a list of
`string`
of device names,
the corresponding devices will be the computation devices for
`eval()`
. If not specified, all available devices (e.g., all GPUs)
will be used. The user doesn't need to specify the CPU device since
it will be always used. Multiple sessions can use the same device.
#### Example
```
Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"])
sess.eval(c)
sess.close()
```
### Create a Remote Session
```
python
create_cloud_job
(
name
,
num_trainer
,
mem_per_trainer
,
gpu_per_trainer
,
cpu_per_trainer
,
num_ps
,
mem_per_ps
,
cpu_per_ps
,
)
```
Creates a Paddle Cloud job. Fails if the job name exists.
```
python
get_cloud_job
(
name
)
```
Gets a Paddle Cloud job.
```
python
remote_session
(
job
)
```
-
*job*
: the Paddle Cloud job.
#### Example
```
Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
sess = paddle.remote_ession(job)
for i in range(1000):
sess.eval(opt)
sess.close()
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录