diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 8d71629faa332fc1e099001950c25e879cbedff3..b3d5ef95cc816e5d8493ee88097d9e4b6d45daf8 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name, in_links_count += 1 layer_name = MakeLayerNameInParentSubmodel(name) layer = g_layer_map[layer_name] - ScatterAgentLayer(name=name, size=layer.size) + ScatterAgentLayer( + name=name, size=layer.size, width=layer.width, height=layer.height) pair = g_current_submodel.in_links.add() pair.layer_name = layer_name @@ -2197,8 +2198,8 @@ class MaxOutLayer(LayerBase): maxout_conf = self.config.inputs[0].maxout_conf parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf) out_channels = maxout_conf.image_conf.channels / maxout_conf.groups - self.set_cnn_layer(name, g_layer_map[input_layer.name].height, - g_layer_map[input_layer.name].width, out_channels) + self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y, + maxout_conf.image_conf.img_size, out_channels) @config_layer('row_conv') @@ -2405,9 +2406,11 @@ class GatherAgentLayer(LayerBase): @config_layer('scatter_agent') class ScatterAgentLayer(LayerBase): - def __init__(self, name, size, device=None): + def __init__(self, name, size, width=None, height=None, device=None): super(ScatterAgentLayer, self).__init__( name, 'scatter_agent', size, inputs=[], device=device) + if height and width: + self.set_layer_height_width(height, width) @config_layer('multiplex') diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index c9e3ded65cb8fc8d00d3decac6af2aff2b67a37d..be854c38f76af4cd6d5f628785b3e4dbfc6ebacb 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -16,11 +16,13 @@ import functools import collections import inspect +import paddle.trainer.config_parser as cp from paddle.trainer.config_parser import * from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation from .evaluators import * -from .poolings import MaxPooling, AvgPooling, BasePoolingType +from .poolings import MaxPooling, AvgPooling, BasePoolingType, \ + CudnnAvgPooling, CudnnMaxPooling from .attrs import * from .default_decorators import * @@ -330,6 +332,14 @@ class LayerOutput(object): self.outputs = outputs self.reverse = reverse + @property + def width(self): + return cp.g_layer_map[self.full_name].width + + @property + def height(self): + return cp.g_layer_map[self.full_name].height + def set_input(self, input): """ Set the input for a memory layer. Can only be used for memory layer @@ -911,7 +921,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): width=width, **ExtraLayerAttribute.to_kwargs(layer_attr)) - return LayerOutput(name, LayerType.DATA, size=size) + num_filters = None + if height is not None and width is not None: + num_filters = size / (width * height) + assert num_filters * width * height == size, \ + "size=%s width=%s height=%s" % (size, width, height) + + return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters) @wrap_name_default("embedding") @@ -2571,6 +2587,10 @@ def img_pool_layer(input, assert input.num_filters is not None num_channels = input.num_filters + assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling, + CudnnMaxPooling], \ + "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported" + if pool_type is None: pool_type = MaxPooling() elif isinstance(pool_type, AvgPooling): @@ -2580,7 +2600,6 @@ def img_pool_layer(input, if ( isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ else pool_type.name - pool_size_y = pool_size if pool_size_y is None else pool_size_y stride_y = stride if stride_y is None else stride_y padding_y = padding if padding_y is None else padding_y @@ -4204,8 +4223,7 @@ def conv_operator(img, num_channels = img.num_filters assert isinstance(filter, LayerOutput) - if filter.size is not None: - filter.size = filter_size * filter_size_y * num_filters * num_channels + assert filter.size is not None opCls = ConvTransOperator if trans else ConvOperator @@ -4916,7 +4934,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): :return: LayerOutput object. :rtype: LayerOutput """ - assert input.layer_type == LayerType.CONV_LAYER assert isinstance(input.activation, LinearActivation) assert groups > 1 if num_channels is None: @@ -6219,11 +6236,11 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1): @wrap_bias_attr_default() def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None): """ - A layer applies a linear transformation to each element in each row of - the input matrix. For each element, the layer first re-scale it and then + A layer applies a linear transformation to each element in each row of + the input matrix. For each element, the layer first re-scale it and then adds a bias to it. - This layer is very like the SlopeInterceptLayer, except the scale and + This layer is very like the SlopeInterceptLayer, except the scale and bias are trainable. .. math::