未验证 提交 129f2717 编写于 作者: L lujun 提交者: GitHub

[cherry pick] dygraph api doc for fluidDoc and api spec (#18302)

add dygraph api doc for fluidDoc and api spec
上级 8aa5757a
......@@ -429,6 +429,299 @@ paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_p
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'bdb8f9dbb0d94b3957272c53eeee9818'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
paddle.fluid.dygraph.Layer.__init__ (ArgSpec(args=['self', 'name_scope', 'dtype'], varargs=None, keywords=None, defaults=(VarType.FP32,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Layer.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Layer.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Layer.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Layer.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.forward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Layer.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Layer.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Layer.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.enabled (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.__impl__ (ArgSpec(args=['func'], varargs=None, keywords=None, defaults=()), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.guard (ArgSpec(args=['place'], varargs=None, keywords=None, defaults=(None,)), ('document', '7071320ffe2eec9aacdae574951278c6'))
paddle.fluid.dygraph.to_variable (ArgSpec(args=['value', 'block', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '9a65d87163a2c6b00fb78f4e61fb3300'))
paddle.fluid.dygraph.Conv2D.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'dtype'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv2D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Conv2D.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Conv2D.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Conv2D.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Conv2D.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Conv2D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv2D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv3D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Conv3D.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Conv3D.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Conv3D.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Conv3D.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Conv3D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv3D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.__init__ (ArgSpec(args=['self', 'name_scope', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'exclusive', 'dtype'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, True, VarType.FP32)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Pool2D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Pool2D.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Pool2D.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Pool2D.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Pool2D.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Pool2D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Pool2D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Pool2D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'dtype'], varargs=None, keywords=None, defaults=(1, None, None, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.FC.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.FC.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.FC.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.FC.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.FC.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.FC.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.FC.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.FC.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'num_channels', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'dtype', 'data_layout', 'in_place', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats', 'trainable_statistics'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'float32', 'NCHW', False, None, None, False, False, False, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.BatchNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.BatchNorm.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.BatchNorm.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.BatchNorm.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.BatchNorm.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.BatchNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BatchNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.BatchNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Embedding.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Embedding.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Embedding.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Embedding.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Embedding.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Embedding.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Embedding.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Embedding.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.GRUUnit.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.GRUUnit.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.GRUUnit.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.GRUUnit.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.forward (ArgSpec(args=['self', 'input', 'hidden'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.GRUUnit.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.GRUUnit.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.GRUUnit.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.LayerNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.LayerNorm.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.LayerNorm.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.LayerNorm.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.LayerNorm.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.LayerNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.LayerNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.LayerNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.__init__ (ArgSpec(args=['self', 'name_scope', 'num_total_classes', 'param_attr', 'bias_attr', 'num_neg_samples', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, 'uniform', None, 0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.NCE.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.NCE.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.NCE.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.NCE.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.forward (ArgSpec(args=['self', 'input', 'label', 'sample_weight'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.NCE.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.NCE.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NCE.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.NCE.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.__init__ (ArgSpec(args=['self', 'name_scope', 'mode', 'param_attr'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.PRelu.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.PRelu.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.PRelu.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.PRelu.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.PRelu.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.PRelu.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PRelu.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.PRelu.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'name', 'act', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.BilinearTensorProduct.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.BilinearTensorProduct.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.BilinearTensorProduct.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.BilinearTensorProduct.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.forward (ArgSpec(args=['self', 'x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.BilinearTensorProduct.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.BilinearTensorProduct.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.BilinearTensorProduct.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv2DTranspose.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Conv2DTranspose.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Conv2DTranspose.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Conv2DTranspose.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Conv2DTranspose.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Conv2DTranspose.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv2DTranspose.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv2DTranspose.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv3DTranspose.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.Conv3DTranspose.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.Conv3DTranspose.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.Conv3DTranspose.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.Conv3DTranspose.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.Conv3DTranspose.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv3DTranspose.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.GroupNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.GroupNorm.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.GroupNorm.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.GroupNorm.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.forward (ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.GroupNorm.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.GroupNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GroupNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.GroupNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.SpectralNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.SpectralNorm.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.SpectralNorm.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.SpectralNorm.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.forward (ArgSpec(args=['self', 'weight'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.SpectralNorm.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.SpectralNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.SpectralNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.SpectralNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.__init__ (ArgSpec(args=['self', 'name_scope', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.TreeConv.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.dygraph.TreeConv.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.dygraph.TreeConv.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.dygraph.TreeConv.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.forward (ArgSpec(args=['self', 'nodes_vector', 'edge_set'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.dygraph.TreeConv.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.dygraph.TreeConv.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.TreeConv.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.TreeConv.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.__init__ (ArgSpec(args=['self', 'block'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.all_parameters (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.eval_mode (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.trace 1. trace(self: paddle.fluid.core_avx.Tracer, arg0: paddle.fluid.core_avx.OpBase, arg1: Dict[unicode, handle], arg2: Dict[unicode, handle], arg3: Dict[unicode, Variant], arg4: paddle::platform::CPUPlace, arg5: bool) -> None 2. trace(self: paddle.fluid.core_avx.Tracer, arg0: paddle.fluid.core_avx.OpBase, arg1: Dict[unicode, handle], arg2: Dict[unicode, handle], arg3: Dict[unicode, Variant], arg4: paddle::platform::CUDAPlace, arg5: bool) -> None
paddle.fluid.dygraph.Tracer.trace_op (ArgSpec(args=['self', 'op', 'inputs', 'outputs', 'stop_gradient'], varargs=None, keywords=None, defaults=(False,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.trace_var (ArgSpec(args=['self', 'name', 'var'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Tracer.train_mode (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.start_gperf_profiler (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.stop_gperf_profiler (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.prepare_context (ArgSpec(args=['strategy'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.save_persistables (ArgSpec(args=['model_dict', 'dirname', 'optimizers'], varargs=None, keywords=None, defaults=('save_dir', None)), ('document', 'bdeefe733228f5f2d4a8f8c61a5956cf'))
paddle.fluid.dygraph.load_persistables (ArgSpec(args=['dirname'], varargs=None, keywords=None, defaults=('save_dir',)), ('document', 'fb79b050b5eb52fa9c5fdccefe521aa1'))
paddle.fluid.dygraph.NoamDecay.__init__ (ArgSpec(args=['self', 'd_model', 'warmup_steps', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(1, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NoamDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.NoamDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PiecewiseDecay.__init__ (ArgSpec(args=['self', 'boundaries', 'values', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PiecewiseDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.PiecewiseDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NaturalExpDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NaturalExpDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.NaturalExpDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.ExponentialDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.ExponentialDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.ExponentialDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.InverseTimeDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.InverseTimeDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.InverseTimeDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PolynomialDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PolynomialDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.PolynomialDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.CosineDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'step_each_epoch', 'epochs', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.CosineDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.CosineDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BackwardStrategy.__init__ __init__(self: paddle.fluid.core_avx.BackwardStrategy) -> None
paddle.fluid.transpiler.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program (ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None), ('document', 'b1951949c6d21698290aa8ac69afee32'))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs (ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None), ('document', 'c89fc350f975ef827f5448d68af388cf'))
......
......@@ -162,8 +162,8 @@ void BindImperative(pybind11::module *m_ptr) {
1. :code:`sort_sum_gradient`, which will sum the gradient by the reverse order of trace.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import FC
......
......@@ -42,7 +42,7 @@ class Conv2D(layers.Layer):
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`
for more detials.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
......@@ -125,10 +125,6 @@ class Conv2D(layers.Layer):
Examples:
.. code-block:: python
with fluid.dygraph.guard():
conv2d = Conv2D( "conv2d", 2, 3)
data = to_variable( data )
conv = conv2d( data )
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D
......@@ -306,6 +302,9 @@ class Conv3D(layers.Layer):
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args:
input (Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
......@@ -356,7 +355,6 @@ class Conv3D(layers.Layer):
with fluid.dygraph.guard():
data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
conv3d = fluid.dygraph.nn.Conv3D(
'Conv3D', num_filters=2, filter_size=3, act="relu")
ret = conv3d(fluid.dygraph.base.to_variable(data))
......@@ -508,6 +506,7 @@ class Conv3DTranspose(layers.Layer):
W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Args:
input(Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
......@@ -677,27 +676,30 @@ class Conv3DTranspose(layers.Layer):
class Pool2D(layers.Layer):
# TODO, should delete this class
"""
${comment}
The pooling2d operation calculates the output based on the input, pooling_type and ksize, strides,
paddings parameters.Input(X) and output(Out) are in NCHW format, where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Args:
name_scope(str) : The name of this class.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_type: (string), pooling type, can be "max" for max-pooling and "avg" for average-pooling
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
global_pooling (bool): (bool, default false) Whether to use the global pooling. If global_pooling = true,
kernel size and paddings will be ignored
use_cudnn (bool): (bool, default True) Onlyceil_mode (bool) - (bool, default false) Whether to use the ceil
function to calculate output height and width. False is the default.
If it is set to False, the floor function will be used.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true
......@@ -713,14 +715,18 @@ class Pool2D(layers.Layer):
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
pool2d = fluid.Pool2D("pool2d",pool_size=2,
import paddle.fluid as fluid
import numpy
with fluid.dygraph.guard():
data = numpy.random.random((3, 32, 32)).astype('float32')
pool2d = fluid.dygraph.Pool2D("pool2d",pool_size=2,
pool_type='max',
pool_stride=1,
global_pooling=False)
pool2d_res = pool2d(data)
"""
def __init__(self,
......@@ -836,7 +842,7 @@ class FC(layers.Layer):
out.shape = (1, 2)
Args:
name(str): The name of this class.
name_scope(str): The name of this class.
size(int): The number of output units in this layer.
num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
two dimensions. If this happens, the multidimensional tensor will first be flattened
......@@ -866,6 +872,7 @@ class FC(layers.Layer):
import paddle.fluid as fluid
from paddle.fluid.dygraph import FC
import numpy as np
data = np.random.uniform( -1, 1, [30, 10, 32] ).astype('float32')
with fluid.dygraph.guard():
fc = FC( "fc", 64, num_flatten_dims=2)
......@@ -1011,7 +1018,7 @@ class BatchNorm(layers.Layer):
y_i &\\gets \\gamma \\hat{x_i} + \\beta
Args:
input(variable): The rank of input variable can be 2, 3, 4, 5.
name_scope(str): The name of this class.
act(string, Default None): Activation type, linear|relu|prelu|...
is_test (bool, Default False): A flag indicating whether it is in
test phrase or not.
......@@ -1032,8 +1039,6 @@ class BatchNorm(layers.Layer):
is not set, the bias is initialized zero. Default: None.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory.
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
......@@ -1050,8 +1055,8 @@ class BatchNorm(layers.Layer):
Variable: A tensor variable which is the result after applying batch normalization on the input.
Examples:
.. code-block:: python
fc = fluid.FC('fc', size=200, param_attr='fc1.w')
hidden1 = fc(x)
batch_norm = fluid.BatchNorm("batch_norm", 10)
......@@ -1193,11 +1198,13 @@ class Embedding(layers.Layer):
Args:
name_scope: See base class.
size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively.
size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
of the dictionary of embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup. Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters
it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
......@@ -1209,15 +1216,19 @@ class Embedding(layers.Layer):
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.dygraph.base as base
import numpy as np
inp_word = np.array([[[1]]]).astype('int64')
dict_size = 20
with fluid.dygraph.guard():
emb = fluid.Embedding(
emb = fluid.dygraph.Embedding(
name_scope='embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
static_rlt3 = emb2(base.to_variable(inp_word))
static_rlt3 = emb(base.to_variable(inp_word))
"""
def __init__(self,
......@@ -1228,7 +1239,6 @@ class Embedding(layers.Layer):
padding_idx=None,
param_attr=None,
dtype='float32'):
super(Embedding, self).__init__(name_scope, dtype)
self._size = size
self._is_sparse = is_sparse
......@@ -1481,6 +1491,26 @@ class GRUUnit(layers.Layer):
Returns:
tuple: The hidden value, reset-hidden value and gate values.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.dygraph.base as base
import numpy
lod = [[2, 4, 3]]
D = 5
T = sum(lod[0])
hidden_input = numpy.random.rand(T, D).astype('float32')
with fluid.dygraph.guard():
x = numpy.random.random((3, 32, 32)).astype('float32')
gru = fluid.dygraph.GRUUnit('gru', size=D * 3)
dy_ret = gru(
base.to_variable(input), base.to_variable(hidden_input))
"""
def __init__(self,
......@@ -1544,15 +1574,12 @@ class NCE(layers.Layer):
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
<http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
<http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`.
By default this operator uses a uniform distribution for sampling.
Args:
name_scope (str): See base class.
num_total_classes (int): Total number of classes in all samples
sample_weight (Variable|None): A Variable of shape [batch_size, 1]
storing a weight for each sample. The default weight for each
sample is 1.0.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of nce. If it is set to None or one attribute of ParamAttr, nce
will create ParamAttr as param_attr. If the Initializer of the param_attr
......@@ -1563,8 +1590,6 @@ class NCE(layers.Layer):
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
num_neg_samples (int): The number of negative classes. The default value is 10.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
......@@ -1789,8 +1814,6 @@ class PRelu(layers.Layer):
element:each element has a weight
param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output tensor with the same shape as input.
......@@ -1799,6 +1822,9 @@ class PRelu(layers.Layer):
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
inp_np = np.ones([5, 200, 100, 100]).astype('float32')
with fluid.dygraph.guard():
mode = 'channel'
......@@ -1807,6 +1833,7 @@ class PRelu(layers.Layer):
mode=mode,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
dy_rlt = prelu(fluid.dygraph.base.to_variable(inp_np))
"""
def __init__(self, name_scope, mode, param_attr=None):
......@@ -2329,7 +2356,6 @@ class GroupNorm(layers.Layer):
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
......@@ -2536,7 +2562,9 @@ class TreeConv(layers.Layer):
out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
......@@ -2587,6 +2615,7 @@ class TreeConv(layers.Layer):
is_bias=False)
def forward(self, nodes_vector, edge_set):
if self._name:
out = self.create_variable(
name=self._name, dtype=self._dtype, persistable=False)
......
......@@ -28,7 +28,7 @@ import hashlib
member_dict = collections.OrderedDict()
experimental_namespace = {"paddle.fluid.dygraph", "paddle.fluid.LoDTensorset"}
experimental_namespace = {"paddle.fluid.LoDTensorset"}
def md5(doc):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册