diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst index 62c154e65dcff1bdfb00109bf1b724c34731652e..d0c8914d18d6260f61461b14c658a81502ba3b34 100644 --- a/doc/api/v2/fluid/layers.rst +++ b/doc/api/v2/fluid/layers.rst @@ -493,3 +493,8 @@ swish ------ .. autofunction:: paddle.v2.fluid.layers.swish :noindex: + +block_expand +------ +.. autofunction:: paddle.v2.fluid.layers.block_expand + :noindex: diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index 4e8fd407c9983e2827d3137fa4f49a8425d5dce2..60efd2321e05a37f4852bd849cd29f4f2f054fcb 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -50,6 +50,7 @@ __all__ = [ 'sequence_last_step', 'dropout', 'split', + 'block_expand', ] @@ -1547,13 +1548,13 @@ def split(input, num_or_sections, dim=-1): Args: input (Variable): The input variable which is a Tensor or LoDTensor. - num_or_sections (int|list): If :attr:`num_or_sections` is an integer, - then the integer indicates the number of equal sized sub-tensors - that the tensor will be divided into. If :attr:`num_or_sections` - is a list of integers, the length of list indicates the number of - sub-tensors and the integers indicate the sizes of sub-tensors' + num_or_sections (int|list): If :attr:`num_or_sections` is an integer, + then the integer indicates the number of equal sized sub-tensors + that the tensor will be divided into. If :attr:`num_or_sections` + is a list of integers, the length of list indicates the number of + sub-tensors and the integers indicate the sizes of sub-tensors' :attr:`dim` dimension orderly. - dim (int): The dimension along which to split. If :math:`dim < 0`, the + dim (int): The dimension along which to split. If :math:`dim < 0`, the dimension to split along is :math:`rank(input) + dim`. Returns: @@ -1597,3 +1598,119 @@ def split(input, num_or_sections, dim=-1): 'axis': dim }) return outs + + +def block_expand(input, + block_x=1, + block_y=1, + stride_x=1, + stride_y=1, + padding_x=0, + padding_y=0, + name=None, + layer_attr=None): + """ + This op use block to scan images and convert these images to sequences. + After expanding, the number of time step are output_height * output_width + for an image, in which output_height and output_width are calculated + by below equation: + + .. math:: + + output\_size = 1 + \ + (2 * padding + img\_size - block\_size + stride - 1) / stride + + And the dimension of each time step is block_y * block_x * input.channels. + + + + Args: + input (Variable): The input should be a tensor in NCHW format. + block_x (int): The width of sub block. + block_y (int): The width of sub block. + stride_x (int): The stride size in horizontal direction. + stride_y (int): The stride size in vertical direction. + padding_x (int): The padding size in horizontal direction. + padding_y (int): The padding size in vertical direction. + name (int): The name of this layer. It is optional. + + Returns: + output: The output is a LoDTensor woth shape + {input.batch_size * output_y * x, + block_y * block_x * input.channels}. + If we regard output as matrix, each row of this matrix is a step of sequence. + + Examples: + + As an example: + + .. code-block:: text + + Given: + + x = [[[[ 6. 2. 1.] + [ 8. 3. 5.] + [ 0. 2. 6.]] + + [[ 2. 4. 4.] + [ 6. 3. 0.] + [ 6. 4. 7.]]] + + [[[ 6. 7. 1.] + [ 5. 7. 9.] + [ 2. 4. 8.]] + + [[ 1. 2. 1.] + [ 1. 3. 5.] + [ 9. 0. 8.]]]] + + x.dims = {2, 2, 3, 3} + + And: + + block_height = 2 + block_width = 2 + stride_height = 1 + stride_width = 1 + padding_height = 0 + padding_width = 0 + + Then: + + output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.] + [ 2. 1. 3. 5. 4. 4. 3. 0.] + [ 8. 3. 0. 2. 6. 3. 6. 4.] + [ 3. 5. 2. 6. 3. 0. 4. 7.] + [ 6. 7. 5. 7. 1. 2. 1. 3.] + [ 7. 1. 7. 9. 2. 1. 3. 5.] + [ 5. 7. 2. 4. 1. 3. 9. 0.] + [ 7. 9. 4. 8. 3. 5. 0. 8.]] + + output.dims = {8, 9} + + output.lod = [[0, 4, 8]] + + + + The simple usage is: + + .. code-block:: python + + output = fluid.layers.block_expand(input=layer, stride_x=1, stride_y=1, block_x=2, block_y=2) + + """ + helper = LayerHelper('block_expand', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='block_expand', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'block_height': block_y, + 'block_width': block_x, + 'stride_height': stride_y, + 'stride_width': stride_x, + 'padding_height': padding_y, + 'padding_width': padding_x + }) + return out