Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
0d96899f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0d96899f
编写于
1月 24, 2018
作者:
Y
ying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the documentation.
上级
d163592a
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
48 addition
and
22 deletion
+48
-22
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+1
-1
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+47
-21
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
0d96899f
...
...
@@ -1968,7 +1968,7 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
fc
= fluid.layers.l2_normalize(x=data, axis=1)
normed
= fluid.layers.l2_normalize(x=data, axis=1)
"""
if
len
(
x
.
shape
)
==
1
:
axis
=
0
...
...
python/paddle/v2/fluid/nets.py
浏览文件 @
0d96899f
...
...
@@ -182,28 +182,28 @@ def scaled_dot_product_attention(queries,
Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Note that batch data containing sequences with different lengths is not
supported by this because of the (batch) matrix multipication.
Args:
queries (Variable): The input variable which
is a Tensor or
LoD
Tensor.
keys (Variable): The input variable which is a Tensor or LoD
Tensor.
values (Variable): The input variable which is a Tensor or
LoDTensor
.
num_heads (int): Head number to compute the dot product attention
.
dropout_rate (float): The dropout rate for attention weight
.
queries (Variable): The input variable which
should be a 3-D Tensor.
keys (Variable): The input variable which should be a 3-D
Tensor.
values (Variable): The input variable which should be a 3-D
Tensor.
num_heads (int): Head number to compute the scaled dot product
attention. Default value is 1
.
dropout_rate (float): The dropout rate to drop the attention weight
.
Default value is 0
.
Returns:
Variable: The context Tensor computed by multi-head scaled dot product
Variable: A 3-D Tensor computed by multi-head scaled dot product
attention.
Examples:
.. code-block:: python
# Suppose q, k, v are tensor variables with the following
# shape: q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
# Suppose q, k, v are Tensors with the following shape:
# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
contexts = fluid.nets.dot_product_attention(q, k, v)
out.shape # [3, 5, 10]
attn_scores.shape # [3, 5, 6]
"""
...
...
@@ -227,6 +227,15 @@ def scaled_dot_product_attention(queries,
"by the number of attention heads (%d)."
%
(
values
.
shape
[
-
1
],
num_heads
))
def
__compute_qkv
(
queries
,
keys
,
values
,
num_heads
):
if
num_heads
==
1
:
return
queries
,
keys
,
values
q
=
layers
.
fc
(
input
=
queries
,
size
=
queries
.
shape
[
-
1
],
num_flatten_dims
=
2
)
k
=
layers
.
fc
(
input
=
keys
,
size
=
keys
.
shape
[
-
1
],
num_flatten_dims
=
2
)
v
=
layers
.
fc
(
input
=
values
,
size
=
values
.
shape
[
-
1
],
num_flatten_dims
=
2
)
return
q
,
k
,
v
def
__split_heads
(
x
,
num_heads
):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
...
...
@@ -237,9 +246,11 @@ def scaled_dot_product_attention(queries,
num_heads(int): The number of heads.
Returns:
a Tensor with shape [..., n, m/n]
Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
of the last dimension of x.
"""
if
num_heads
==
1
:
return
x
if
num_heads
==
1
:
return
x
hidden_size
=
x
.
shape
[
-
1
]
# reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
...
...
@@ -254,6 +265,19 @@ def scaled_dot_product_attention(queries,
return
layers
.
transpose
(
x
=
reshaped
,
perm
=
[
0
,
2
,
1
,
3
])
def
__combine_heads
(
x
):
"""
Reshape the last two dimensions of inpunt tensor x so that it becomes
one dimension.
Args:
x(Tensor): a 4-D input Tensor with shape
[bs, num_heads, max_sequence_length, hidden_dim].
Returns:
Tensor: a Tensor with shape
[bs, max_sequence_length, num_heads * hidden_dim].
"""
if
len
(
x
.
shape
)
==
3
:
return
if
len
(
x
.
shape
)
!=
4
:
raise
ValueError
(
"Input(x) should be a 4-D Tensor."
)
...
...
@@ -266,9 +290,11 @@ def scaled_dot_product_attention(queries,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]
]))
q
=
__split_heads
(
queries
,
num_heads
)
k
=
__split_heads
(
keys
,
num_heads
)
v
=
__split_heads
(
values
,
num_heads
)
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
num_heads
)
q
=
__split_heads
(
q
,
num_heads
)
k
=
__split_heads
(
k
,
num_heads
)
v
=
__split_heads
(
v
,
num_heads
)
key_dim_per_head
=
keys
.
shape
[
-
1
]
//
num_heads
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
key_dim_per_head
**-
0.5
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录