diff --git a/doc/api/v1/index_cn.rst b/doc/api/v1/index_cn.rst index 3718cd73a2003b8ef6c406a9bd51dc68e76402dc..cf146dc088e3905a751ff55c26fd82ef0ba02c89 100644 --- a/doc/api/v1/index_cn.rst +++ b/doc/api/v1/index_cn.rst @@ -21,7 +21,7 @@ Model Config API trainer_config_helpers/optimizers.rst trainer_config_helpers/data_sources.rst trainer_config_helpers/layers.rst - trainer_config_helpers/activations.rst + trainer_config_helpers/activations.rst trainer_config_helpers/poolings.rst trainer_config_helpers/networks.rst trainer_config_helpers/evaluators.rst diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index c94627a72806fa2eca77c79da24f7f3ca18f0259..d4e9d53e5c0955912a594fe8cd9cd41a4080a2d2 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -345,6 +345,11 @@ clip .. autoclass:: paddle.v2.layer.clip :noindex: +resize +------ +.. autoclass:: paddle.v2.layer.resize + :noindex: + slope_intercept --------------- .. autoclass:: paddle.v2.layer.slope_intercept diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index 9d3d02ffc3116ebec537ab9b890eafccad196ed0..c823d7e9fcd63dd7719ac1403952b03c2d2f03c0 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -206,7 +206,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。 - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 + - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。 - 在 `.cu`文件中注册GPU Kernel。 diff --git a/doc/howto/dev/new_op_en.md b/doc/howto/dev/new_op_en.md index 57ff7caad19cc6bf2e4a052d306d4fc303c8875d..1e88e1f5b4df710f1b69f0305d8d8a2921c4249a 100644 --- a/doc/howto/dev/new_op_en.md +++ b/doc/howto/dev/new_op_en.md @@ -205,7 +205,7 @@ The definition of its corresponding backward operator, if applicable, is similar - `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`. - `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient. - - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulKernel`. + - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`. - Registering GPU Kernel in `.cu` files diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index feadc9be4ba074ea300707c259f1a59cecaa5d6a..9140854a96ccac583adce4c89f7b134360360c6d 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -29,7 +29,7 @@ cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator proto_desc) cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) -cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) +cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry sum_op) py_proto_compile(framework_py_proto SRCS framework.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 8b5560ffa1234145fb4291f5730f89fd7375ee15..1012a30b0a6b28e79b92007244bb6e0139cf39f9 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -245,5 +245,12 @@ std::vector InferShapeContext::MultiOutput( return res; } +std::ostream& operator<<(std::ostream& os, + const OperatorWithKernel::OpKernelKey& kernel_key) { + os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_ + << "]"; + return os; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 0af527c88c753f8545184d4175114c17abfba0a6..73e53a4176db32b7cbfd79c088dadfc23037213f 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -478,9 +478,25 @@ class OperatorWithKernel : public OperatorBase { this->InferShape(&infer_shape_ctx); ExecutionContext ctx(*this, scope, dev_ctx); - auto& opKernel = AllOpKernels().at(type_).at( - OpKernelKey(IndicateDataType(ctx), dev_ctx)); - opKernel->Compute(ctx); + + // check if op[type] has kernel registered. + auto& all_op_kernels = AllOpKernels(); + auto kernels_iter = all_op_kernels.find(type_); + if (kernels_iter == all_op_kernels.end()) { + PADDLE_THROW("op[%s] has no kernel", type_); + } + + // check if op[type] have kernel for kernel_key + OpKernelMap& kernels = kernels_iter->second; + auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx); + auto kernel_iter = kernels.find(kernel_key); + + if (kernel_iter == kernels.end()) { + PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_, + kernel_key); + } + + kernel_iter->second->Compute(ctx); } static std::unordered_map& @@ -529,5 +545,8 @@ class OperatorWithKernel : public OperatorBase { } }; +std::ostream& operator<<(std::ostream& os, + const OperatorWithKernel::OpKernelKey& kernel_key); + } // namespace framework } // namespace paddle diff --git a/paddle/operators/add_op.cc b/paddle/operators/add_op.cc deleted file mode 100644 index 3914d1323083ede6a7ea07e7b4ef76b9e4afd26d..0000000000000000000000000000000000000000 --- a/paddle/operators/add_op.cc +++ /dev/null @@ -1,68 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/operators/add_op.h" - -namespace paddle { -namespace operators { - -class AddOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of AddOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of AddOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of AddOp should not be null."); - - auto x_dims = ctx->GetInputDim("X"); - auto y_dims = ctx->GetInputDim("Y"); - PADDLE_ENFORCE_EQ(x_dims, y_dims, - "Two input of Add Op's dimension must be same."); - ctx->SetOutputDim("Out", x_dims); - } -}; - -class AddOpMaker : public framework::OpProtoAndCheckerMaker { - public: - AddOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of add op"); - AddInput("Y", "The second input of add op"); - AddOutput("Out", "The output of add op"); - AddComment(R"DOC( -Two Element Add Operator. - -The equation is: Out = X + Y -)DOC"); - } -}; - -class AddOpGrad : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(framework::InferShapeContextBase* ctx) const override {} -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(add, ops::AddOp, ops::AddOpMaker, add_grad, ops::AddOpGrad); - -REGISTER_OP_CPU_KERNEL(add, ops::AddKernel); diff --git a/paddle/operators/add_op.cu b/paddle/operators/add_op.cu deleted file mode 100644 index d9c6d20a6c320b59e57ed25da3dd8b093833f8c7..0000000000000000000000000000000000000000 --- a/paddle/operators/add_op.cu +++ /dev/null @@ -1,18 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/add_op.h" - -namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(add, ops::AddKernel); diff --git a/paddle/operators/add_op.h b/paddle/operators/add_op.h deleted file mode 100644 index 75163032a1ff11a1f18cfd0a4ff7289ff0cb66bf..0000000000000000000000000000000000000000 --- a/paddle/operators/add_op.h +++ /dev/null @@ -1,48 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once -#include "paddle/framework/eigen.h" -#include "paddle/framework/op_registry.h" - -namespace paddle { -namespace operators { - -using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; - -template -class AddKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* input0 = context.Input("X"); - auto* input1 = context.Input("Y"); - auto* output = context.Output("Out"); - - output->mutable_data(context.GetPlace()); - - auto X = EigenVector::Flatten(*input0); - auto Y = EigenVector::Flatten(*input1); - auto Z = EigenVector::Flatten(*output); - - auto place = context.GetEigenDevice(); - - Z.device(place) = X + Y; - } -}; - -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index 8f62a9f4db8d39edc11949df513aebf4fa257d45..5d76313aeb96c0c8204f64aee1057f753ec85d6b 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -43,8 +43,10 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of sum operator.").AsDuplicable(); - AddOutput("Out", "the output tensor of sum operator."); + AddInput("X", "the input tensors of sum operator.") + .AsDuplicable() + .NotInGradient(); + AddOutput("Out", "the output tensor of sum operator.").NotInGradient(); AddComment(R"DOC( Sum the input tensors. diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 74025d2a7bb68f87afd24bb4b70ec425ba0dcb64..d37f29d2c4bf9177398ea82c99bc40affdd952c2 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -142,6 +142,7 @@ __all__ = [ 'img_pool3d_layer', 'scale_shift_layer', 'img_conv3d_layer', + 'resize_layer', ] @@ -250,6 +251,8 @@ class LayerType(object): KMAX_SEQ_SCORE = 'kmax_seq_score' SCALE_SHIFT_LAYER = 'scale_shift' + RESIZE = 'resize' + @staticmethod def is_layer_type(type_name): """ @@ -6473,7 +6476,7 @@ def switch_order_layer(input, act=None, layer_attr=None): """ - This layer switch dimension order of image input. + This layer switch dimension order of image input. From order "batchSize, channels, height, width" to order "batchSize, height, width, channels". @@ -6932,3 +6935,23 @@ def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None): bias=ParamAttr.to_bias(bias_attr)) return LayerOutput( name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size) + + +@wrap_name_default("resize") +def resize_layer(input, size, name=None): + """ + The resize layer resizes the input matrix with a shape of [Height, Width] + into the output matrix with a shape of [Height x Width / size, size], + where size is the parameter of this layer indicating the output dimension. + + :param input: The input to this layer. + :type input: LayerOutput. + :param name: The name of this layer. It is optional. + :type name: basestring + :param size: The resized output dimesion of this layer. + :type size: int + :return: A LayerOutput object. + :rtype: LayerOutput + """ + Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size) + return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size) diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index 8a204a96f3ef57673cef65306d0bf8e8c3409751..6a4550c209762362d40f8a2afaf526a1fe53ca6b 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer -test_conv3d_layer test_deconv3d_layer test_BatchNorm3D) +test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_resize_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_resize_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..9399252b23d0ec0cce918196bf4077a51e757eaf --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_resize_layer.protostr @@ -0,0 +1,27 @@ +type: "nn" +layers { + name: "input" + type: "data" + size: 300 + active_type: "" +} +layers { + name: "__resize_0__" + type: "resize" + size: 150 + active_type: "" + inputs { + input_layer_name: "input" + } +} +input_layer_names: "input" +output_layer_names: "__resize_0__" +sub_models { + name: "root" + layer_names: "input" + layer_names: "__resize_0__" + input_layer_names: "input" + output_layer_names: "__resize_0__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..09a6f507338c1da8e9ce60555f8ca2576704170c --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py @@ -0,0 +1,6 @@ +from paddle.trainer_config_helpers import * + +data = data_layer(name='input', size=300) +resized = resize_layer(input=data, size=150) + +outputs(resized) diff --git a/python/paddle/v2/framework/tests/test_add_op.py b/python/paddle/v2/framework/tests/test_add_op.py deleted file mode 100644 index 3ca34d9b9fc2b7b54cc25ca0e0d1a08a71e37c52..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_add_op.py +++ /dev/null @@ -1,20 +0,0 @@ -import unittest -import numpy as np -from op_test import OpTest - - -class TestAddOp(OpTest): - def setUp(self): - self.op_type = "add" - self.inputs = { - 'X': np.random.random((102, 105)).astype("float32"), - 'Y': np.random.random((102, 105)).astype("float32") - } - self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']} - - def test_check_output(self): - self.check_output() - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_cond_op.py b/python/paddle/v2/framework/tests/test_cond_op.py index 3698ce9c8ed5c021826af622a53ee742e9b22552..76323b5e10c59822b4de82a70ebd57b3e57c8392 100644 --- a/python/paddle/v2/framework/tests/test_cond_op.py +++ b/python/paddle/v2/framework/tests/test_cond_op.py @@ -15,7 +15,7 @@ class PySimpleCond(object): for i in range(1, 10, 2): array[i] = 0 self.cond = np.array(array) - self.x = np.ones(shape=(10, 1)) + self.x = np.ones(shape=(10, 1)).astype("float32") def forward(self): self.index_t = np.where(self.cond == 1) diff --git a/python/paddle/v2/framework/tests/test_gradient_checker.py b/python/paddle/v2/framework/tests/test_gradient_checker.py deleted file mode 100644 index 85117bf9600975ea5d61dfb5b34335792bf6d8b2..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_gradient_checker.py +++ /dev/null @@ -1,46 +0,0 @@ -import unittest -import numpy as np -import paddle.v2.framework.core as core -from op_test import get_numeric_gradient -from op_test import create_op - - -class GetNumericGradientTest(unittest.TestCase): - def test_add_op(self): - x = np.random.random((10, 1)).astype("float32") - y = np.random.random((10, 1)).astype("float32") - z = x + y - scope = core.Scope() - add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict()) - arr = get_numeric_gradient(scope, add_op, {'X': x, - 'Y': y}, 'X', ['Out']) - self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4) - - def test_softmax_op(self): - def stable_softmax(x): - """Compute the softmax of vector x in a numerically stable way.""" - shiftx = x - np.max(x) - exps = np.exp(shiftx) - return exps / np.sum(exps) - - def label_softmax_grad(Y, dY): - dX = Y * 0.0 - for i in range(Y.shape[0]): - d = np.dot(Y[i, :], dY[i, :]) - dX[i, :] = Y[i, :] * (dY[i, :] - d) - return dX - - X = np.random.random((2, 2)).astype("float32") - Y = np.apply_along_axis(stable_softmax, 1, X) - dY = np.ones(Y.shape) - dX = label_softmax_grad(Y, dY) - - scope = core.Scope() - softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict()) - - arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y") - np.testing.assert_almost_equal(arr, dX, decimal=1e-2) - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_net.py b/python/paddle/v2/framework/tests/test_net.py index 50cfb855f2b01d8fd32342855d46716da7e07856..8503257feb8e1a5802f3f889f72c559a2aaa583a 100644 --- a/python/paddle/v2/framework/tests/test_net.py +++ b/python/paddle/v2/framework/tests/test_net.py @@ -15,7 +15,7 @@ def fc(X, W, Y): class TestNet(unittest.TestCase): def test_net_all(self): net = core.Net.create() - op1 = Operator("add", X="X", Y="Y", Out="Out") + op1 = Operator("sum", X=["X", "Y"], Out="Out") net.append_op(op1) net2 = core.Net.create() @@ -26,7 +26,7 @@ class TestNet(unittest.TestCase): expected = ''' Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}. - Op(add), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}. + Op(sum), inputs:{X[X, Y]}, outputs:{Out[Out]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}. diff --git a/python/paddle/v2/framework/tests/test_operator.py b/python/paddle/v2/framework/tests/test_operator.py index 040556322d79cbb594eb9af585a5b9920d7ab625..98f6b2f5ee639120557cb85b3ada6d2931f7d0d2 100644 --- a/python/paddle/v2/framework/tests/test_operator.py +++ b/python/paddle/v2/framework/tests/test_operator.py @@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase): class TestOpCreations(unittest.TestCase): def test_all(self): - add_op = op.Operator("add", X="a", Y="b", Out="z") + add_op = op.Operator("sum", X=["a", "b"], Out="z") self.assertIsNotNone(add_op) # Invoke C++ DebugString() - self.assertEqual('Op(add), inputs:{X[a], Y[b]}, outputs:{Out[z]}.', + self.assertEqual('Op(sum), inputs:{X[a, b]}, outputs:{Out[z]}.', str(add_op))