Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
0af1a87b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0af1a87b
编写于
1月 05, 2022
作者:
J
Jiaqi Liu
提交者:
GitHub
1月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make post training quant API support dataloader (#38686)
* make post training quant API support dataloader
上级
60c51de5
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
52 addition
and
8 deletion
+52
-8
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+14
-3
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_while.py
...ntrib/slim/tests/test_post_training_quantization_while.py
+38
-5
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
0af1a87b
...
@@ -17,6 +17,7 @@ import re
...
@@ -17,6 +17,7 @@ import re
import
logging
import
logging
import
numpy
as
np
import
numpy
as
np
import
shutil
import
shutil
from
inspect
import
isgeneratorfunction
from
....
import
io
from
....
import
io
from
....
import
core
from
....
import
core
from
....
import
framework
from
....
import
framework
...
@@ -136,6 +137,7 @@ class PostTrainingQuantization(object):
...
@@ -136,6 +137,7 @@ class PostTrainingQuantization(object):
params_filename
=
None
,
params_filename
=
None
,
batch_generator
=
None
,
batch_generator
=
None
,
sample_generator
=
None
,
sample_generator
=
None
,
data_loader
=
None
,
batch_size
=
10
,
batch_size
=
10
,
batch_nums
=
None
,
batch_nums
=
None
,
algo
=
"KL"
,
algo
=
"KL"
,
...
@@ -175,6 +177,9 @@ class PostTrainingQuantization(object):
...
@@ -175,6 +177,9 @@ class PostTrainingQuantization(object):
calibrate data for DataLoader, and it only returns a sample every
calibrate data for DataLoader, and it only returns a sample every
time. Note that, sample_generator and batch_generator, only one
time. Note that, sample_generator and batch_generator, only one
should be set. Beisdes, sample_generator dose not support lod tensor.
should be set. Beisdes, sample_generator dose not support lod tensor.
data_loader(Python Generator, Paddle.io.DataLoader, optional): The
Generator or Dataloader provides calibrate data, and it could
return a batch every time.
batch_size(int, optional): The batch size of DataLoader. Default is 10.
batch_size(int, optional): The batch size of DataLoader. Default is 10.
batch_nums(int, optional): If batch_nums is not None, the number of
batch_nums(int, optional): If batch_nums is not None, the number of
calibrate data is batch_size*batch_nums. If batch_nums is None, use
calibrate data is batch_size*batch_nums. If batch_nums is None, use
...
@@ -279,8 +284,11 @@ class PostTrainingQuantization(object):
...
@@ -279,8 +284,11 @@ class PostTrainingQuantization(object):
assert
executor
is
not
None
,
"The executor cannot be None."
assert
executor
is
not
None
,
"The executor cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
any
([
gen
is
not
None
]
for
gen
in
[
sample_generator
,
assert
any
([
gen
is
not
None
]
for
gen
in
[
sample_generator
,
batch_generator
]),
"The sample_generator and batch_generator "
\
batch_generator
,
data_loader
]),
"The sample_generator, batch_generator "
\
"cannot be None in the same time."
"and data_loader cannot be None in the same time."
if
data_loader
is
not
None
:
assert
isinstance
(
data_loader
,
(
io
.
DataLoader
,
type
(
isgeneratorfunction
))),
\
"data_loader only accepts `paddle.io.DataLoader` or Generator instance."
assert
batch_size
>
0
,
"The batch_size should be greater than 0."
assert
batch_size
>
0
,
"The batch_size should be greater than 0."
assert
algo
in
self
.
_support_algo_type
,
\
assert
algo
in
self
.
_support_algo_type
,
\
"The algo should be KL, hist, mse, avg, abs_max or min_max."
"The algo should be KL, hist, mse, avg, abs_max or min_max."
...
@@ -323,7 +331,7 @@ class PostTrainingQuantization(object):
...
@@ -323,7 +331,7 @@ class PostTrainingQuantization(object):
self
.
_program
=
None
self
.
_program
=
None
self
.
_feed_list
=
None
self
.
_feed_list
=
None
self
.
_fetch_list
=
None
self
.
_fetch_list
=
None
self
.
_data_loader
=
None
self
.
_data_loader
=
data_loader
self
.
_out_scale_op_list
=
_out_scale_op_list
self
.
_out_scale_op_list
=
_out_scale_op_list
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_weight_var_name
=
set
()
...
@@ -473,6 +481,9 @@ class PostTrainingQuantization(object):
...
@@ -473,6 +481,9 @@ class PostTrainingQuantization(object):
feed_vars
=
[
framework
.
_get_var
(
str
(
var_name
),
self
.
_program
)
\
feed_vars
=
[
framework
.
_get_var
(
str
(
var_name
),
self
.
_program
)
\
for
var_name
in
self
.
_feed_list
]
for
var_name
in
self
.
_feed_list
]
if
self
.
_data_loader
is
not
None
:
return
self
.
_data_loader
=
io
.
DataLoader
.
from_generator
(
self
.
_data_loader
=
io
.
DataLoader
.
from_generator
(
feed_list
=
feed_vars
,
capacity
=
3
*
self
.
_batch_size
,
iterable
=
True
)
feed_list
=
feed_vars
,
capacity
=
3
*
self
.
_batch_size
,
iterable
=
True
)
if
self
.
_sample_generator
is
not
None
:
if
self
.
_sample_generator
is
not
None
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_while.py
浏览文件 @
0af1a87b
...
@@ -115,19 +115,30 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -115,19 +115,30 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
is_optimize_model
=
False
,
batch_size
=
10
,
batch_size
=
10
,
batch_nums
=
10
):
batch_nums
=
10
,
is_data_loader
=
False
):
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
scope
=
fluid
.
global_scope
()
val_reader
=
paddle
.
dataset
.
mnist
.
train
()
val_reader
=
paddle
.
dataset
.
mnist
.
train
()
def
val_data_generator
():
batches
=
[]
for
data
in
val_reader
():
batches
.
append
(
data
[
0
].
reshape
(
1
,
28
,
28
))
if
len
(
batches
)
==
batch_size
:
batches
=
np
.
asarray
(
batches
)
yield
{
"x"
:
batches
}
batches
=
[]
ptq
=
PostTrainingQuantization
(
ptq
=
PostTrainingQuantization
(
executor
=
exe
,
executor
=
exe
,
model_dir
=
model_path
,
model_dir
=
model_path
,
model_filename
=
'model.pdmodel'
,
model_filename
=
'model.pdmodel'
,
params_filename
=
'model.pdiparams'
,
params_filename
=
'model.pdiparams'
,
sample_generator
=
val_reader
,
sample_generator
=
val_reader
if
not
is_data_loader
else
None
,
data_loader
=
val_data_generator
if
is_data_loader
else
None
,
batch_size
=
batch_size
,
batch_size
=
batch_size
,
batch_nums
=
batch_nums
,
batch_nums
=
batch_nums
,
algo
=
algo
,
algo
=
algo
,
...
@@ -153,7 +164,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -153,7 +164,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
diff_threshold
,
diff_threshold
,
batch_size
=
10
,
batch_size
=
10
,
infer_iterations
=
10
,
infer_iterations
=
10
,
quant_iterations
=
5
):
quant_iterations
=
5
,
is_data_loader
=
False
):
origin_model_path
=
self
.
download_model
(
data_url
,
data_md5
,
model_name
)
origin_model_path
=
self
.
download_model
(
data_url
,
data_md5
,
model_name
)
#origin_model_path = os.path.join(origin_model_path, model_name)
#origin_model_path = os.path.join(origin_model_path, model_name)
...
@@ -166,8 +178,15 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -166,8 +178,15 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
quantizable_op_type
,
is_full_quantize
,
origin_model_path
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
)
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
,
is_data_loader
=
is_data_loader
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
model_name
,
infer_iterations
*
batch_size
))
...
@@ -307,6 +326,20 @@ class TestPostTrainingAbsMaxForWhile(TestPostTrainingQuantization):
...
@@ -307,6 +326,20 @@ class TestPostTrainingAbsMaxForWhile(TestPostTrainingQuantization):
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
quant_iterations
)
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
,
is_data_loader
=
True
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录