提交 0ac08489 编写于 作者: F FDInSky 提交者: lvmengsi

udpate en doc test=develop, test=document_fix (#20459)

上级 54647a54
...@@ -104,11 +104,11 @@ paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', ' ...@@ -104,11 +104,11 @@ paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', '
paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0')) paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0'))
paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8')) paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8'))
paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.UniformInitializer ('paddle.fluid.initializer.UniformInitializer', ('document', '587b7035cd1d56f76f2ded617b92521d')) paddle.fluid.initializer.UniformInitializer ('paddle.fluid.initializer.UniformInitializer', ('document', '264e7794745ec36cf826a6f243027db7'))
paddle.fluid.initializer.UniformInitializer.__init__ (ArgSpec(args=['self', 'low', 'high', 'seed', 'diag_num', 'diag_step', 'diag_val'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0, 0, 0, 1.0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.UniformInitializer.__init__ (ArgSpec(args=['self', 'low', 'high', 'seed', 'diag_num', 'diag_step', 'diag_val'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0, 0, 0, 1.0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.NormalInitializer ('paddle.fluid.initializer.NormalInitializer', ('document', '279a0d89bf01138fbf4c4ba14f22099b')) paddle.fluid.initializer.NormalInitializer ('paddle.fluid.initializer.NormalInitializer', ('document', '9eb479385b813c960c4ebae9ddccece4'))
paddle.fluid.initializer.NormalInitializer.__init__ (ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.NormalInitializer.__init__ (ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.TruncatedNormalInitializer ('paddle.fluid.initializer.TruncatedNormalInitializer', ('document', 'b8e90aad6ee5687cb5f2b6fd404370d1')) paddle.fluid.initializer.TruncatedNormalInitializer ('paddle.fluid.initializer.TruncatedNormalInitializer', ('document', 'e073fe89f0367607a3c0ea34f2d7699f'))
paddle.fluid.initializer.TruncatedNormalInitializer.__init__ (ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.TruncatedNormalInitializer.__init__ (ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.XavierInitializer ('paddle.fluid.initializer.XavierInitializer', ('document', 'c3b1953ac9b0bf6c0dac50a093b4ef04')) paddle.fluid.initializer.XavierInitializer ('paddle.fluid.initializer.XavierInitializer', ('document', 'c3b1953ac9b0bf6c0dac50a093b4ef04'))
paddle.fluid.initializer.XavierInitializer.__init__ (ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.XavierInitializer.__init__ (ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...@@ -402,7 +402,7 @@ paddle.fluid.layers.reciprocal (ArgSpec(args=['x', 'name'], varargs=None, keywor ...@@ -402,7 +402,7 @@ paddle.fluid.layers.reciprocal (ArgSpec(args=['x', 'name'], varargs=None, keywor
paddle.fluid.layers.square (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a684ce5a61c2c046aa5639d98aaa3acc')) paddle.fluid.layers.square (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a684ce5a61c2c046aa5639d98aaa3acc'))
paddle.fluid.layers.softplus (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '76c853f8a013466b7f443ad166e259bd')) paddle.fluid.layers.softplus (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '76c853f8a013466b7f443ad166e259bd'))
paddle.fluid.layers.softsign (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e52b23bc455c708d7a26501db4ab8971')) paddle.fluid.layers.softsign (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e52b23bc455c708d7a26501db4ab8971'))
paddle.fluid.layers.softshrink (ArgSpec(args=['x', 'alpha'], varargs=None, keywords=None, defaults=(None,)), ('document', '958c7bfdfb0b5e92af6ca4a90d24e5ef')) paddle.fluid.layers.softshrink (ArgSpec(args=['x', 'alpha'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ca05a2a810b78772bfda9f2d0f19ed32'))
paddle.fluid.layers.hard_shrink (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '386a4103d2884b2f1312ebc1e8ee6486')) paddle.fluid.layers.hard_shrink (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '386a4103d2884b2f1312ebc1e8ee6486'))
paddle.fluid.layers.cumsum (ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'c1f2e4c4511da09d5d89c556ea802bd1')) paddle.fluid.layers.cumsum (ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'c1f2e4c4511da09d5d89c556ea802bd1'))
paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '94c71025bf11ab8172fd455350274138')) paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '94c71025bf11ab8172fd455350274138'))
...@@ -923,7 +923,7 @@ paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'f ...@@ -923,7 +923,7 @@ paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'f
paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', 'b2d435f782ac8ea3ca480b8d24e7f5b4')) paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', 'b2d435f782ac8ea3ca480b8d24e7f5b4'))
paddle.fluid.nets.glu (ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3efe197c8e3e75f84a4c464d8b74e943')) paddle.fluid.nets.glu (ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3efe197c8e3e75f84a4c464d8b74e943'))
paddle.fluid.nets.scaled_dot_product_attention (ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)), ('document', 'b1a07a0000eb9103e3a143ca8c13de5b')) paddle.fluid.nets.scaled_dot_product_attention (ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)), ('document', 'b1a07a0000eb9103e3a143ca8c13de5b'))
paddle.fluid.nets.img_conv_group (ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True)), ('document', '6033b78da39b8b0ed302fbb0f67da502')) paddle.fluid.nets.img_conv_group (ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True)), ('document', 'a59c581d5969266427e841abe69f694a'))
paddle.fluid.optimizer.SGDOptimizer ('paddle.fluid.optimizer.SGDOptimizer', ('document', 'c3c8dd3193d991adf8bda505560371d6')) paddle.fluid.optimizer.SGDOptimizer ('paddle.fluid.optimizer.SGDOptimizer', ('document', 'c3c8dd3193d991adf8bda505560371d6'))
paddle.fluid.optimizer.SGDOptimizer.__init__ (ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.optimizer.SGDOptimizer.__init__ (ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.SGDOptimizer.apply_gradients (ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', '80ea99c9af7ef5fac7e57fb302103610')) paddle.fluid.optimizer.SGDOptimizer.apply_gradients (ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', '80ea99c9af7ef5fac7e57fb302103610'))
......
...@@ -219,7 +219,7 @@ class UniformInitializer(Initializer): ...@@ -219,7 +219,7 @@ class UniformInitializer(Initializer):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.data(name='x', shape=[None, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10, fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5)) param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
""" """
...@@ -320,7 +320,7 @@ class NormalInitializer(Initializer): ...@@ -320,7 +320,7 @@ class NormalInitializer(Initializer):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10, fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0)) param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
...@@ -403,7 +403,7 @@ class TruncatedNormalInitializer(Initializer): ...@@ -403,7 +403,7 @@ class TruncatedNormalInitializer(Initializer):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.data(name='x', shape=[None, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10, fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0)) param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
""" """
......
...@@ -79,25 +79,25 @@ softshrink.__doc__ = """ ...@@ -79,25 +79,25 @@ softshrink.__doc__ = """
:strong:`Softshrink Activation Operator` :strong:`Softshrink Activation Operator`
.. math:: .. math::
out = \begin{cases} out = \\begin{cases}
x - \alpha, \text{if } x > \alpha \\ x - \\alpha, \\text{if } x > \\alpha \\\\
x + \alpha, \text{if } x < -\alpha \\ x + \\alpha, \\text{if } x < -\\alpha \\\\
0, \text{otherwise} 0, \\text{otherwise}
\end{cases} \\end{cases}
Args: Args:
x: Input of Softshrink operator x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
alpha (FLOAT): non-negative offset alpha (float): non-negative offset
Returns: Returns:
Output of Softshrink operator Output of Softshrink operator with the same type of input.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
data = fluid.layers.data(name="input", shape=[784]) data = fluid.data(name="input", shape=[None, 784])
result = fluid.layers.softshrink(x=data, alpha=0.3) result = fluid.layers.softshrink(x=data, alpha=0.3)
""" """
......
...@@ -186,8 +186,8 @@ def img_conv_group(input, ...@@ -186,8 +186,8 @@ def img_conv_group(input,
library is installed. Default: True library is installed. Default: True
Return: Return:
The final result after serial computation using Convolution2d, A Variable holding Tensor representing the final result after serial computation using Convolution2d,
BatchNorm, DropOut, and Pool2d. BatchNorm, DropOut, and Pool2d, whose data type is the same with input.
Examples: Examples:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册