From 0a33f170a423cc238f7b1c37a8e76a48ce9f48ec Mon Sep 17 00:00:00 2001 From: hedaoyuan <hedaoyuan@github.com> Date: Wed, 1 Mar 2017 20:35:04 +0800 Subject: [PATCH] Add stacked lstm network --- demo/sentiment/train_v2.py | 74 ++++++++++++++++++++++++++++++++++++-- 1 file changed, 72 insertions(+), 2 deletions(-) diff --git a/demo/sentiment/train_v2.py b/demo/sentiment/train_v2.py index a764798addf..779bfee5b6e 100644 --- a/demo/sentiment/train_v2.py +++ b/demo/sentiment/train_v2.py @@ -1,4 +1,6 @@ from os.path import join as join_path +import paddle.trainer_config_helpers.attrs as attrs +from paddle.trainer_config_helpers.poolings import MaxPooling import paddle.v2 as paddle import paddle.v2.layer as layer import paddle.v2.activation as activation @@ -115,7 +117,73 @@ def convolution_net(input_dim, output = layer.fc(input=[conv_3, conv_4], size=class_dim, act=activation.Softmax()) - lbl = layer.data("label", data_type.integer_value(1)) + lbl = layer.data("label", data_type.integer_value(2)) + cost = layer.classification_cost(input=output, label=lbl) + return cost + + +def stacked_lstm_net(input_dim, + class_dim=2, + emb_dim=128, + hid_dim=512, + stacked_num=3, + is_predict=False): + """ + A Wrapper for sentiment classification task. + This network uses bi-directional recurrent network, + consisting three LSTM layers. This configure is referred to + the paper as following url, but use fewer layrs. + http://www.aclweb.org/anthology/P15-1109 + + input_dim: here is word dictionary dimension. + class_dim: number of categories. + emb_dim: dimension of word embedding. + hid_dim: dimension of hidden layer. + stacked_num: number of stacked lstm-hidden layer. + is_predict: is predicting or not. + Some layers is not needed in network when predicting. + """ + assert stacked_num % 2 == 1 + + layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5) + fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3) + lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.) + para_attr = [fc_para_attr, lstm_para_attr] + bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.) + relu = activation.Relu() + linear = activation.Linear() + + data = layer.data("word", data_type.integer_value_sequence(input_dim)) + emb = layer.embedding(input=data, size=emb_dim) + + fc1 = layer.fc(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr) + lstm1 = layer.lstmemory( + input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) + + inputs = [fc1, lstm1] + for i in range(2, stacked_num + 1): + fc = layer.fc(input=inputs, + size=hid_dim, + act=linear, + param_attr=para_attr, + bias_attr=bias_attr) + lstm = layer.lstmemory( + input=fc, + reverse=(i % 2) == 0, + act=relu, + bias_attr=bias_attr, + layer_attr=layer_attr) + inputs = [fc, lstm] + + fc_last = layer.pooling(input=inputs[0], pooling_type=MaxPooling()) + lstm_last = layer.pooling(input=inputs[1], pooling_type=MaxPooling()) + output = layer.fc(input=[fc_last, lstm_last], + size=class_dim, + act=activation.Softmax(), + bias_attr=bias_attr, + param_attr=para_attr) + + lbl = layer.data("label", data_type.integer_value(2)) cost = layer.classification_cost(input=output, label=lbl) return cost @@ -177,7 +245,9 @@ if __name__ == '__main__': paddle.init(use_gpu=True, trainer_count=4) # network config - cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict) + # cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict) + cost = stacked_lstm_net( + dict_dim, class_dim=class_dim, stacked_num=3, is_predict=is_predict) # create parameters parameters = paddle.parameters.create(cost) -- GitLab