Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
08cb472a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
08cb472a
编写于
1月 19, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify the implementation.
上级
fc581bc5
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
68 addition
and
104 deletion
+68
-104
paddle/operators/sequence_reshape_op.cc
paddle/operators/sequence_reshape_op.cc
+18
-12
paddle/operators/sequence_reshape_op.cu
paddle/operators/sequence_reshape_op.cu
+9
-2
paddle/operators/sequence_reshape_op.h
paddle/operators/sequence_reshape_op.h
+25
-82
python/paddle/v2/fluid/tests/test_sequence_reshape.py
python/paddle/v2/fluid/tests/test_sequence_reshape.py
+16
-8
未找到文件。
paddle/operators/sequence_reshape_op.cc
浏览文件 @
08cb472a
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_reshape_op.h"
#include "paddle/framework/ddim.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -26,9 +27,11 @@ class SequenceReshapeOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceReshapeOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_numel
=
product
(
x_dims
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2U
,
"Rank of Input(X) should be 2."
);
int
dimension
=
ctx
->
Attrs
().
Get
<
int
>
(
"new_dim"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
static_cast
<
int64_t
>
(
dimension
)});
int
new_dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"new_dim"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_numel
/
new_dim
,
static_cast
<
int64_t
>
(
new_dim
)});
}
};
...
...
@@ -54,16 +57,16 @@ example will help to illustrate the function of this operator:
x is a LoDTensor:
x.lod = [[0, 2, 6]]
x.data = [[
0.1, 0.2], [0.3, 0.
4],
[
0.5, 0.6], [0.7, 0.8], [0.9, 1.0], [1.1, 1.
2]]
x.data = [[
1, 2], [3,
4],
[
5, 6], [7, 8], [9, 10], [11, 1
2]]
x.dims = [6, 2]
set new_dim = 4
then out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[
0.1, 0.2, 0.3, 0.
4],
[
0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.
2]]
out.data = [[
1, 2, 3,
4],
[
5, 6, 7, 8], [9, 10, 11, 1
2]]
out.dims = [3, 4]
Currently, only 1-level LoDTensor is supported and please make sure (original
...
...
@@ -82,8 +85,6 @@ class SequenceReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) of SequenceReshapeGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input(Out) of SequenceReshapeGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceReshapeGradOp should not be null."
);
...
...
@@ -101,7 +102,6 @@ class SequenceReshapeGradOpMaker : public framework::SingleGradOpDescMaker {
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"sequence_reshape_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"Out"
,
Output
(
"Out"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
...
...
@@ -118,7 +118,13 @@ REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
REGISTER_OPERATOR
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_reshape
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
);
paddle/operators/sequence_reshape_op.cu
浏览文件 @
08cb472a
...
...
@@ -17,7 +17,14 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
);
paddle/operators/sequence_reshape_op.h
浏览文件 @
08cb472a
...
...
@@ -28,8 +28,6 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
out_width
=
context
.
Attr
<
int
>
(
"new_dim"
);
const
T
*
p_in_data
=
in
->
data
<
T
>
();
auto
in_dims
=
in
->
dims
();
int64_t
in_width
=
in_dims
[
1
];
auto
&
in_lod
=
in
->
lod
();
...
...
@@ -43,6 +41,9 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
auto
in_lod_l0
=
in_lod
[
0
];
int
seq_num
=
in_lod_l0
.
size
()
-
1
;
if
(
in_width
==
out_width
)
{
out
->
set_lod
(
in
->
lod
());
}
else
{
auto
&
out_lod
=
*
out
->
mutable_lod
();
out_lod
.
resize
(
1
);
out_lod
[
0
].
clear
();
...
...
@@ -52,44 +53,17 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
size_t
offset
=
0
;
offset
=
(
seq_len
*
in_width
)
/
out_width
;
PADDLE_ENFORCE_EQ
(
offset
*
out_width
,
seq_len
*
in_width
,
"Please make sure (sequence_length * dimension) can be
"
"
divided by new_dim with no remainder for each "
"Please make sure (sequence_length * dimension) can
"
"be
divided by new_dim with no remainder for each "
"sequence. The %dth sequence is invalid."
,
i
+
1
);
PADDLE_ENFORCE_GT
(
offset
,
0
,
"Illegal operation, length of the %dth sequence become "
"to 0 after reshaped."
,
i
+
1
);
out_lod
[
0
].
push_back
(
out_lod
[
0
].
back
()
+
offset
);
}
}
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
Resize
({
static_cast
<
int64_t
>
(
out_lod
[
0
].
back
()),
out_width
});
T
*
p_out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
set_constant
(
context
.
device_context
(),
out
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
in_offset
=
in_lod_l0
[
i
]
*
in_width
;
size_t
out_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
in_count
=
(
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
])
*
in_width
;
size_t
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
in_count
,
out_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_in_data
+
in_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_in_data
+
in_offset
,
bytes
,
dev_ctx
.
stream
());
#endif
}
}
framework
::
Copy
(
*
in
,
context
.
GetPlace
(),
out
);
out
->
Resize
({
static_cast
<
int64_t
>
(
out
->
lod
()[
0
].
back
()),
out_width
});
}
};
...
...
@@ -98,45 +72,14 @@ class SequenceReshapeGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
out_grad_tensor_ptr
=
auto
*
outg_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x
_grad
_tensor_ptr
=
auto
*
x
g
_tensor_ptr
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
p_x_grad_data
=
x_grad_tensor_ptr
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_out_grad_data
=
out_grad_tensor_ptr
->
data
<
T
>
();
auto
&
x_lod
=
x_tensor_ptr
->
lod
();
int
seq_num
=
x_lod
[
0
].
size
()
-
1
;
int
x_width
=
x_tensor_ptr
->
dims
()[
1
];
auto
&
out_lod
=
out_tensor_ptr
->
lod
();
int
out_width
=
out_tensor_ptr
->
dims
()[
1
];
math
::
set_constant
(
context
.
device_context
(),
x_grad_tensor_ptr
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
src_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
dst_offset
=
x_lod
[
0
][
i
]
*
x_width
;
size_t
src_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
dst_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
src_count
,
dst_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_grad_data
+
src_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_out_grad_data
+
src_offset
,
bytes
,
dev_ctx
.
stream
());
#endif
}
}
xg_tensor_ptr
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
Copy
(
*
outg_tensor_ptr
,
context
.
GetPlace
(),
xg_tensor_ptr
);
xg_tensor_ptr
->
Resize
(
x_tensor_ptr
->
dims
());
}
};
...
...
python/paddle/v2/fluid/tests/test_sequence_reshape.py
浏览文件 @
08cb472a
...
...
@@ -40,14 +40,7 @@ class TestSequenceReshape(OpTest):
assert
int
(
offset
)
*
dimension
==
seq_len
*
x_width
out_lod
[
0
].
append
(
out_lod
[
0
][
-
1
]
+
int
(
offset
))
out
=
np
.
zeros
(
shape
=
(
out_lod
[
0
][
-
1
],
dimension
)).
astype
(
'float32'
)
for
i
in
xrange
(
len
(
x_lod
[
0
])
-
1
):
x_offset
=
x_lod
[
0
][
i
]
*
x_width
out_offset
=
out_lod
[
0
][
i
]
*
dimension
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
dimension
x_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
count
=
min
(
out_count
,
x_count
)
out
.
ravel
()[
out_offset
:
out_offset
+
count
]
=
x
.
ravel
()[
x_offset
:
x_offset
+
count
]
out
.
ravel
()[:]
=
x
.
ravel
()[:]
return
out
,
out_lod
def
test_check_output
(
self
):
...
...
@@ -72,5 +65,20 @@ class TestSequenceReshape_reduce(TestSequenceReshape):
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
class
TestSequenceReshape_same
(
TestSequenceReshape
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_reshape'
dimension
=
12
x_lod
=
[[
0
,
4
,
6
,
8
,
12
]]
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
12
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'new_dim'
:
dimension
}
out
,
out_lod
=
self
.
compute_output
(
x
,
x_lod
,
dimension
)
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录