未验证 提交 078a6782 编写于 作者: Z Zeng Jinle 提交者: GitHub

refine math_op_patch, test=develop (#19727)

上级 e506c99c
......@@ -108,5 +108,8 @@ REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradMaker,
REGISTER_OP_CPU_KERNEL(
scale, ops::ScaleKernel<paddle::platform::CPUDeviceContext, float>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, double>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, uint8_t>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, int16_t>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, int>,
ops::ScaleKernel<paddle::platform::CPUDeviceContext, int64_t>);
......@@ -20,6 +20,11 @@ REGISTER_OP_CUDA_KERNEL(
scale,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, float>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, double>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
uint8_t>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int8_t>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
int16_t>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int>,
paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
int64_t>,
......
......@@ -14,10 +14,19 @@
from __future__ import print_function
from .. import core
from ..framework import Variable, unique_name
from .layer_function_generator import OpProtoHolder
from ..initializer import force_init_on_cpu
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
def monkey_patch_variable():
def unique_tmp_name():
......@@ -30,10 +39,16 @@ def monkey_patch_variable():
raise ValueError("Cannot get data type from %s", var.name)
return dtype
def current_block(var):
return var.block.program.current_block()
def create_new_tmp_var(block, dtype):
tmp_name = unique_tmp_name()
return block.create_var(name=tmp_name, dtype=dtype)
def create_tensor(block, value, dtype, shape):
value = float(value)
tmp_name = unique_tmp_name()
var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
var = create_new_tmp_var(block, dtype)
block.append_op(
type="fill_constant",
outputs={'Out': [var]},
......@@ -53,15 +68,15 @@ def monkey_patch_variable():
def create_tensor_with_batchsize(ref_var, value, dtype):
assert isinstance(ref_var, Variable)
value = float(value)
tmp_name = unique_tmp_name()
var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
block = current_block(ref_var)
var = create_new_tmp_var(block, dtype)
batch_dim = -1
for i, d in enumerate(ref_var.shape):
if d < 0:
batch_dim = i
break
assert batch_dim != -1
ref_var.block.append_op(
block.append_op(
type='fill_constant_batch_size_like',
outputs={'Out': [var]},
inputs={'Input': [ref_var]},
......@@ -87,9 +102,9 @@ def monkey_patch_variable():
Returns:
Variable with new dtype
"""
tmp_name = unique_tmp_name()
out = self.block.create_var(name=tmp_name, dtype=dtype)
self.block.append_op(
block = current_block(self)
out = create_new_tmp_var(block, dtype)
block.append_op(
type="cast",
inputs={"X": [self]},
outputs={"Out": [out]},
......@@ -97,8 +112,46 @@ def monkey_patch_variable():
"out_dtype": out.dtype})
return out
def _elemwise_method_creator_(method_name, op_type, reverse=False):
def _scalar_elementwise_op_(var, scale, bias):
block = current_block(var)
out = create_new_tmp_var(block, var.dtype)
block.append_op(
type="scale",
inputs={"X": [var]},
outputs={"Out": [out]},
attrs={"scale": scale,
"bias": bias})
return out
def _scalar_elementwise_add_(var, value):
return _scalar_elementwise_op_(var, 1.0, value)
def _scalar_elementwise_sub_(var, value):
return _scalar_elementwise_op_(var, 1.0, -value)
def _scalar_elementwise_rsub_(var, value):
return _scalar_elementwise_op_(var, -1.0, value)
def _scalar_elementwise_mul_(var, value):
return _scalar_elementwise_op_(var, value, 0.0)
def _scalar_elementwise_div_(var, value):
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
def _elemwise_method_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
if scalar_method is not None:
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = safe_get_dtype(self)
if not isinstance(other_var, Variable):
......@@ -110,7 +163,7 @@ def monkey_patch_variable():
break
if not has_batch_size:
other_var = create_tensor(
self.block,
current_block(self),
other_var,
dtype=lhs_dtype,
shape=self.shape)
......@@ -118,9 +171,9 @@ def monkey_patch_variable():
other_var = create_tensor_with_batchsize(
self, other_var, lhs_dtype)
else:
# add fill_op to self.block
# add fill_op to current_block
other_var = create_scalar(
self.block, value=other_var, dtype=lhs_dtype)
current_block(self), value=other_var, dtype=lhs_dtype)
rhs_dtype = safe_get_dtype(other_var)
if lhs_dtype != rhs_dtype:
......@@ -130,8 +183,7 @@ def monkey_patch_variable():
self = other_var
other_var = tmp
tmp_name = unique_tmp_name()
out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)
axis = -1
if other_var.shape[0] == -1:
......@@ -141,7 +193,7 @@ def monkey_patch_variable():
"be smaller than the rank of its second argument: %s vs %s" %
(len(self.shape), len(other_var.shape)))
self.block.append_op(
current_block(self).append_op(
type=op_type,
inputs={'X': [self],
'Y': [other_var]},
......@@ -164,31 +216,32 @@ def monkey_patch_variable():
return __impl__
# inject methods
for method_name, op_type, reverse in (
("__add__", "elementwise_add", False),
for method_name, op_type, reverse, scalar_method in (
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
# a+b == b+a. Do not need to reverse explicitly
("__radd__", "elementwise_add", False),
("__sub__", "elementwise_sub", False),
("__rsub__", "elementwise_sub", True),
("__mul__", "elementwise_mul", False),
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
# a*b == b*a. Do not need to reverse explicitly
("__rmul__", "elementwise_mul", False),
("__div__", "elementwise_div", False),
("__truediv__", "elementwise_div", False),
("__rdiv__", "elementwise_div", True),
("__rtruediv__", "elementwise_div", True),
("__pow__", "elementwise_pow", False),
("__rpow__", "elementwise_pow", True),
("__floordiv__", "elementwise_floordiv", False),
("__mod__", "elementwise_mod", False),
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
("__rdiv__", "elementwise_div", True, None),
("__rtruediv__", "elementwise_div", True, None),
("__pow__", "elementwise_pow", False, None),
("__rpow__", "elementwise_pow", True, None),
("__floordiv__", "elementwise_floordiv", False, None),
("__mod__", "elementwise_mod", False, None),
# for logical compare
("__eq__", "equal", False),
("__ne__", "not_equal", False),
("__lt__", "less_than", False),
("__le__", "less_equal", False),
("__gt__", "greater_than", False),
("__ge__", "greater_equal", False)):
("__eq__", "equal", False, None),
("__ne__", "not_equal", False, None),
("__lt__", "less_than", False, None),
("__le__", "less_equal", False, None),
("__gt__", "greater_than", False, None),
("__ge__", "greater_equal", False, None)):
setattr(Variable, method_name,
_elemwise_method_creator_(method_name, op_type, reverse))
_elemwise_method_creator_(method_name, op_type, reverse,
scalar_method))
Variable.astype = astype
......@@ -52,9 +52,8 @@ class TestOptimizer(unittest.TestCase):
return opts
opts = check_sgd_optimizer({'learning_rate': 1.1})
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "sgd"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "sgd"])
opts = check_sgd_optimizer({'learning_rate': 1.0})
self.assertEqual(len(opts), 1)
......@@ -94,9 +93,8 @@ class TestOptimizerBackwardApplygrad(unittest.TestCase):
return opts
opts = check_sgd_optimizer({'learning_rate': 1.1})
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "sgd"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "sgd"])
opts = check_sgd_optimizer({'learning_rate': 1.0})
self.assertEqual(len(opts), 1)
......@@ -143,10 +141,9 @@ class TestMomentumOptimizer(unittest.TestCase):
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = momentum_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 3)
self.assertEqual(len(opts), 2)
sgd_op = opts[-1]
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "momentum"])
self.assertEqual([op.type for op in opts], ["scale", "momentum"])
self.assertFalse(sgd_op.attr('use_nesterov'))
# Check accumulators
......@@ -197,10 +194,9 @@ class TestMomentumOptimizer(unittest.TestCase):
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = momentum_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 3)
self.assertEqual(len(opts), 2)
sgd_op = opts[-1]
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "momentum"])
self.assertEqual([op.type for op in opts], ["scale", "momentum"])
self.assertTrue(sgd_op.attr('use_nesterov'))
# Check accumulators
......@@ -260,9 +256,8 @@ class TestAdagradOptimizer(unittest.TestCase):
self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = adagrad_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "adagrad"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
# Check accumulators
accumulators = adagrad_optimizer.get_accumulators()
......@@ -324,10 +319,9 @@ class TestAdamOptimizer(unittest.TestCase):
self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = adam_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 5)
self.assertEqual(
[op.type for op in opts],
["fill_constant", "elementwise_mul", "adam", "scale", "scale"])
self.assertEqual(len(opts), 4)
self.assertEqual([op.type for op in opts],
["scale", "adam", "scale", "scale"])
# Check accumulators
accumulators = adam_optimizer.get_accumulators()
......@@ -391,10 +385,8 @@ class TestAdamaxOptimizer(unittest.TestCase):
self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = adamax_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 4)
self.assertEqual(
[op.type for op in opts],
["fill_constant", "elementwise_mul", "adamax", "scale"])
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
# Check accumulators
accumulators = adamax_optimizer.get_accumulators()
......@@ -455,10 +447,8 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 3)
self.assertEqual(
[op.type for op in opts],
["fill_constant", "elementwise_mul", "decayed_adagrad"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
# Check accumulators
accumulators = decayed_adagrad_optimizer.get_accumulators()
......@@ -521,9 +511,8 @@ class TestFtrlOptimizer(unittest.TestCase):
self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
with framework.program_guard(program, init_program):
opts = ftrl_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "ftrl"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
# Check accumulators
accumulators = ftrl_optimizer.get_accumulators()
......@@ -578,9 +567,8 @@ class TestLookaheadOptimizer(unittest.TestCase):
lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
with framework.program_guard(program, init_program):
opts, _ = lookahead.minimize(mean_out)
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "sgd"])
self.assertEqual(len(opts), 2)
self.assertEqual([op.type for op in opts], ["scale", "sgd"])
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册