未验证 提交 06796782 编写于 作者: Z zhang wenhui 提交者: GitHub

add norm 2.0 api, test=develop (#26465)

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop

* add norm 2.0 api, test=develop
上级 a8b5741f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest, _set_use_system_allocator
from paddle.fluid.framework import grad_var_name
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
class TestBatchNorm(unittest.TestCase):
def test_name(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
with fluid.dygraph.guard(p):
batch_norm1d = paddle.nn.BatchNorm1d(1, name="test")
def test_error(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
#paddle.disable_static()
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
x_data_3 = np.random.random(size=(2, 1, 3)).astype('float32')
def error1d():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
batch_norm1d = paddle.nn.BatchNorm1d(1)
batch_norm1d(fluid.dygraph.to_variable(x_data_4))
def error2d():
x_data_3 = np.random.random(size=(2, 1, 3)).astype('float32')
batch_norm2d = paddle.nn.BatchNorm2d(1)
batch_norm2d(fluid.dygraph.to_variable(x_data_3))
def error3d():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
batch_norm3d = paddle.nn.BatchNorm3d(1)
batch_norm3d(fluid.dygraph.to_variable(x_data_4))
with fluid.dygraph.guard(p):
self.assertRaises(ValueError, error1d)
self.assertRaises(ValueError, error2d)
self.assertRaises(ValueError, error3d)
def test_dygraph(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
shape = [4, 10, 4, 4]
def compute_v1(x, is_test, trainable_statistics):
with fluid.dygraph.guard(p):
bn = fluid.dygraph.BatchNorm(
shape[1],
is_test=is_test,
trainable_statistics=trainable_statistics)
y = bn(fluid.dygraph.to_variable(x))
return y.numpy()
def compute_v2(x):
with fluid.dygraph.guard(p):
bn = paddle.nn.BatchNorm2d(shape[1])
y = bn(fluid.dygraph.to_variable(x))
return y.numpy()
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x, False, False)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
def test_static(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("batch_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
exe = fluid.Executor(p)
shape = [4, 10, 16, 16]
def compute_v1(x_np, is_test, trainable_statistics):
with program_guard(Program(), Program()):
bn = fluid.dygraph.BatchNorm(
shape[1],
is_test=is_test,
trainable_statistics=trainable_statistics)
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = bn(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
def compute_v2(x_np):
with program_guard(Program(), Program()):
bn = paddle.nn.BatchNorm2d(shape[1])
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = bn(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x, False, False)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest, _set_use_system_allocator
from paddle.fluid.framework import grad_var_name
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
class TestDygraphGroupNormv2(unittest.TestCase):
def test_dygraph(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("group_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
shape = [2, 6, 2, 2]
def compute_v1(x):
with fluid.dygraph.guard(p):
gn = fluid.dygraph.GroupNorm(channels=2, groups=2)
y = gn(fluid.dygraph.to_variable(x))
return y.numpy()
def compute_v2(x):
with fluid.dygraph.guard(p):
gn = paddle.nn.GroupNorm(num_channels=2, num_groups=2)
y = gn(fluid.dygraph.to_variable(x))
return y.numpy()
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
def test_static(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("layer_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
exe = fluid.Executor(p)
shape = [2, 6, 2, 2]
def compute_v1(x_np):
with program_guard(Program(), Program()):
gn = fluid.dygraph.GroupNorm(channels=2, groups=2)
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = gn(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
def compute_v2(x_np):
with program_guard(Program(), Program()):
gn = paddle.nn.GroupNorm(num_channels=2, num_groups=2)
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = gn(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest, _set_use_system_allocator
from paddle.fluid.framework import grad_var_name
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
class TestInstanceNorm(unittest.TestCase):
def test_error(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(
"instance_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
def error1d():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
instance_norm1d = paddle.nn.InstanceNorm1d(1)
instance_norm1d(fluid.dygraph.to_variable(x_data_4))
def error2d():
x_data_3 = np.random.random(size=(2, 1, 3)).astype('float32')
instance_norm2d = paddle.nn.InstanceNorm2d(1)
instance_norm2d(fluid.dygraph.to_variable(x_data_3))
def error3d():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
instance_norm3d = paddle.nn.BatchNorm3d(1)
instance_norm3d(fluid.dygraph.to_variable(x_data_4))
with fluid.dygraph.guard(p):
self.assertRaises(ValueError, error1d)
self.assertRaises(ValueError, error2d)
self.assertRaises(ValueError, error3d)
def test_dygraph(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(
"instance_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
shape = [4, 10, 4, 4]
def compute_v1(x):
with fluid.dygraph.guard(p):
bn = fluid.dygraph.InstanceNorm(shape[1])
y = bn(fluid.dygraph.to_variable(x))
return y.numpy()
def compute_v2(x):
with fluid.dygraph.guard(p):
bn = paddle.nn.InstanceNorm2d(shape[1])
y = bn(fluid.dygraph.to_variable(x))
return y.numpy()
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
def test_static(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(
"instance_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
exe = fluid.Executor(p)
shape = [4, 10, 16, 16]
def compute_v1(x_np):
with program_guard(Program(), Program()):
ins = fluid.dygraph.InstanceNorm(shape[1])
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = ins(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
def compute_v2(x_np):
with program_guard(Program(), Program()):
ins = paddle.nn.InstanceNorm2d(shape[1])
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = ins(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest, _set_use_system_allocator
from paddle.fluid.framework import grad_var_name
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
class TestDygraphLayerNormv2(unittest.TestCase):
def test_dygraph(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("layer_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
shape = [4, 10, 4, 4]
def compute_v1(x):
with fluid.dygraph.guard(p):
ln = fluid.dygraph.LayerNorm(shape[1:])
y = ln(fluid.dygraph.to_variable(x))
return y.numpy()
def compute_v2(x):
with fluid.dygraph.guard(p):
ln = paddle.nn.LayerNorm(shape[1:])
y = ln(fluid.dygraph.to_variable(x))
return y.numpy()
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
def test_static(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu("layer_norm"):
places.append(fluid.CUDAPlace(0))
for p in places:
exe = fluid.Executor(p)
shape = [4, 10, 16, 16]
def compute_v1(x_np):
with program_guard(Program(), Program()):
ln = fluid.dygraph.LayerNorm(shape[1:])
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = ln(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
def compute_v2(x_np):
with program_guard(Program(), Program()):
ln = paddle.nn.LayerNorm(shape[1:])
x = fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
y = ln(x)
exe.run(fluid.default_startup_program())
r = exe.run(feed={'x': x_np}, fetch_list=[y])[0]
return r
x = np.random.randn(*shape).astype("float32")
y1 = compute_v1(x)
y2 = compute_v2(x)
self.assertTrue(np.allclose(y1, y2))
if __name__ == '__main__':
unittest.main()
......@@ -128,6 +128,12 @@ from .layer.norm import GroupNorm #DEFINE_ALIAS
from .layer.norm import LayerNorm #DEFINE_ALIAS
from .layer.norm import SpectralNorm #DEFINE_ALIAS
from .layer.norm import InstanceNorm #DEFINE_ALIAS
from .layer.norm import InstanceNorm1d #DEFINE_ALIAS
from .layer.norm import InstanceNorm2d #DEFINE_ALIAS
from .layer.norm import InstanceNorm3d #DEFINE_ALIAS
from .layer.norm import BatchNorm1d #DEFINE_ALIAS
from .layer.norm import BatchNorm2d #DEFINE_ALIAS
from .layer.norm import BatchNorm3d #DEFINE_ALIAS
# from .layer.rnn import RNNCell #DEFINE_ALIAS
# from .layer.rnn import GRUCell #DEFINE_ALIAS
# from .layer.rnn import LSTMCell #DEFINE_ALIAS
......
......@@ -160,12 +160,12 @@ from .loss import square_error_cost #DEFINE_ALIAS
from .loss import ssd_loss #DEFINE_ALIAS
from .loss import teacher_student_sigmoid_loss #DEFINE_ALIAS
from .loss import ctc_loss #DEFINE_ALIAS
# from .norm import batch_norm #DEFINE_ALIAS
# from .norm import data_norm #DEFINE_ALIAS
# from .norm import group_norm #DEFINE_ALIAS
# from .norm import instance_norm #DEFINE_ALIAS
from .norm import l2_normalize #DEFINE_ALIAS
# from .norm import layer_norm #DEFINE_ALIAS
from .norm import batch_norm #DEFINE_ALIAS
from .norm import instance_norm #DEFINE_ALIAS
from .norm import layer_norm #DEFINE_ALIAS
from .norm import lrn #DEFINE_ALIAS
from .norm import normalize #DEFINE_ALIAS
# from .norm import spectral_norm #DEFINE_ALIAS
......
......@@ -18,16 +18,19 @@ import paddle.fluid as fluid
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, core
from ...framework import create_parameter
from ...fluid.layers import l2_normalize #DEFINE_ALIAS
from ...fluid.layers import lrn #DEFINE_ALIAS
from ...fluid.initializer import Constant
from ...fluid.param_attr import ParamAttr
from ...fluid import core, dygraph_utils
__all__ = [
# 'batch_norm',
'batch_norm',
# 'data_norm',
# 'group_norm',
# 'instance_norm',
'instance_norm',
'l2_normalize',
# 'layer_norm',
'layer_norm',
'lrn',
'normalize',
# 'spectral_norm'
......@@ -110,3 +113,286 @@ def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
eps = out.block.create_var(dtype=out.dtype)
paddle.fill_constant([1], out.dtype, epsilon, out=eps)
return paddle.elementwise_div(x, paddle.maximum(out, eps), name=name)
def batch_norm(x,
running_mean,
running_var,
weight,
bias,
training=False,
momentum=0.9,
epsilon=1e-05,
data_format="NCHW",
name=None):
"""
Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
nn.functional.batch_norm is uesd for nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d. Please use above API for BatchNorm.
Parameters:
x(Tesnor): input value. It's data type should be float32, float64.
running_mean(Tensor): running mean.
running_var(Tensor): running variance.
weight(Tensor): The weight tensor of batch_norm, can not be None.
bias(Tensor): The bias tensor of batch_norm can not be None.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Defalut False.
data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.random.seed(123)
x = np.random.random(size=(2, 1, 2, 3)).astype('float32')
running_mean = np.random.random(size=1).astype('float32')
running_variance = np.random.random(size=1).astype('float32')
weight_data = np.random.random(size=1).astype('float32')
bias_data = np.random.random(size=1).astype('float32')
x = paddle.to_tensor(x)
rm = paddle.to_tensor(running_mean)
rv = paddle.to_tensor(running_variance)
w = paddle.to_tensor(weight_data)
b = paddle.to_tensor(bias_data)
batch_norm_out = paddle.nn.functional.batch_norm(x, rm, rv, w, b)
print batch_norm_out
"""
assert len(x.shape) >= 2, "input dim must be larger than 1"
# we use not training means use_global_status, more details see nn._BatchNormBase
use_global_stats = not training
# input ad out must share the memory
mean_out = running_mean
variance_out = running_var
if in_dygraph_mode():
# for dygraph need tuple
attrs = ("momentum", momentum, "epsilon", epsilon, "data_layout",
data_format, "use_mkldnn", False, "fuse_with_relu", False,
"use_global_stats", use_global_stats)
batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
x, weight, bias, running_mean, running_var, mean_out, variance_out,
*attrs)
return dygraph_utils._append_activation_in_dygraph(
batch_norm_out, act=None)
check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
'BatchNorm')
# for static need dict
attrs = {
"momentum": momentum,
"epsilon": epsilon,
"data_layout": data_format,
"use_mkldnn": False,
"fuse_with_relu": False,
"use_global_stats": use_global_stats,
}
inputs = {
"X": [x],
"Scale": [weight],
"Bias": [bias],
"Mean": [running_mean],
"Variance": [running_var]
}
helper = LayerHelper('batch_norm', **locals())
dtype = x.dtype if x.dtype is not 'float16' else 'float32'
saved_mean = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
saved_variance = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
batch_norm_out = helper.create_variable_for_type_inference(dtype)
outputs = {
"Y": [batch_norm_out],
"MeanOut": [running_mean],
"VarianceOut": [running_var],
"SavedMean": [saved_mean],
"SavedVariance": [saved_variance]
}
helper.append_op(
type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
return helper.append_activation(batch_norm_out)
def layer_norm(x,
normalized_shape,
weight=None,
bias=None,
epsilon=1e-05,
name=None):
"""
see more detail in paddle.nn.LayerNorm
Parameters:
x(Tensor): Input Tensor. It's data type should be float32, float64.
normalized_shape(int|list|tuple): Input shape from an expected input of
size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
If it is a single integer, this module will normalize over the last dimension
which is expected to be of that specific size.
epsilon(float, optional): The small value added to the variance to prevent
division by zero. Default: 1e-05.
weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
layer_norm = paddle.nn.functional.layer_norm(x, x.shape[1:])
layer_norm_out = layer_norm(x)
print(layer_norm_out.numpy)
"""
input_shape = list(x.shape)
input_ndim = len(input_shape)
normalized_ndim = len(normalized_shape)
begin_norm_axis = input_ndim - normalized_ndim
if input_ndim < normalized_ndim or input_shape[
begin_norm_axis:] != normalized_shape:
str_normalized_shape = str(normalized_shape)
raise ValueError('Given normalized_shape is ' + str_normalized_shape +
', expected input with shape [*, ' +
str_normalized_shape[
1:] + ', but got input shape ' + str(input_shape))
if in_dygraph_mode():
pre_act, _, _ = core.ops.layer_norm(x, weight, bias, 'epsilon', epsilon,
'begin_norm_axis', begin_norm_axis)
return dygraph_utils._append_activation_in_dygraph(pre_act, act=None)
check_variable_and_dtype(x, 'input', ['float32', 'float64'], 'LayerNorm')
inputs = dict()
inputs['X'] = [x]
if weight:
inputs['Scale'] = [weight]
if bias:
inputs['Bias'] = [bias]
attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}
# create output
helper = LayerHelper('layer_norm', **locals())
mean_out = helper.create_variable_for_type_inference(
dtype=x.type, stop_gradient=True)
variance_out = helper.create_variable_for_type_inference(
dtype=x.type, stop_gradient=True)
layer_norm_out = helper.create_variable_for_type_inference(x.type)
helper.append_op(
type="layer_norm",
inputs=inputs,
outputs={
"Y": layer_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": epsilon,
"begin_norm_axis": begin_norm_axis})
return helper.append_activation(layer_norm_out)
def instance_norm(x,
running_mean=None,
running_var=None,
weight=None,
bias=None,
use_input_stats=True,
momentum=0.9,
eps=1e-05,
data_format="NCHW",
name=None):
"""
See more detail in nn.layer.InstanceNorm2d.
Parameters:
x(Tensor): Input Tensor. It's data type should be float32, float64.
running_mean(Tensor): running mean. Default None.
running_var(Tensor): running variance. Default None.
weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
use_input_stats(bool): Default True.
data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Returns:
None.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
instance_norm_out = paddle.nn.functional.instancenorm(x)
print(instance_norm_out.numpy)
"""
if in_dygraph_mode():
out, _, _ = core.ops.instance_norm(x, weight, bias, "epsilon", eps,
"momentum", momentum, "data_format",
data_format)
return out
check_variable_and_dtype(x, 'input', ['float32', 'float64'], "InstanceNorm")
attrs = {"epsilon": eps, "momentum": momentum, "data_format": data_format}
if weight and bias:
inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
else:
inputs = {"X": [x]}
helper = LayerHelper('instance_norm', **locals())
saved_mean = helper.create_variable_for_type_inference(
dtype=x.dtype, stop_gradient=True)
saved_variance = helper.create_variable_for_type_inference(
dtype=x.dtype, stop_gradient=True)
instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
outputs = {
"Y": [instance_norm_out],
"SavedMean": [saved_mean],
"SavedVariance": [saved_variance]
}
helper.append_op(
type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
return instance_norm_out
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -14,28 +27,877 @@
# TODO: define normalization api
import warnings
from ...fluid.dygraph.nn import InstanceNorm
from ...fluid.dygraph import BatchNorm #DEFINE_ALIAS
from ...fluid.dygraph import GroupNorm #DEFINE_ALIAS
from ...fluid.dygraph import LayerNorm #DEFINE_ALIAS
#from ...fluid.dygraph import GroupNorm #DEFINE_ALIAS
#from ...fluid.dygraph import LayerNorm #DEFINE_ALIAS
from ...fluid.dygraph import SpectralNorm #DEFINE_ALIAS
from ...fluid.dygraph import layers
from ...framework import get_default_dtype, set_default_dtype
from ...fluid.framework import in_dygraph_mode
from ...fluid.initializer import Constant
from ...fluid.param_attr import ParamAttr
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid import core
from ...fluid import core, dygraph_utils
from ..functional import batch_norm, layer_norm, instance_norm
import numpy as np
import numbers
import warnings
__all__ = [
'BatchNorm', 'GroupNorm', 'LayerNorm', 'SpectralNorm', 'InstanceNorm',
'SyncBatchNorm'
'BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'InstanceNorm1d',
'InstanceNorm2d', 'InstanceNorm3d', 'SyncBatchNorm'
]
class _InstanceNormBase(layers.Layer):
"""
This class is based class for InstanceNorm1d, 2d, 3d.
See InstaceNorm1d, InstanceNorm2d or InstanceNorm3d for more details.
"""
def __init__(self,
num_features,
epsilon=1e-5,
momentum=0.9,
weight_attr=None,
bias_attr=None,
track_running_stats=False,
data_format="NCHW",
name=None):
super(_InstanceNormBase, self).__init__()
if weight_attr == False or bias_attr == False:
assert weight_attr == param_attr, "weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
self._epsilon = epsilon
self._weight_attr = weight_attr
self._bias_attr = bias_attr
if weight_attr != False and bias_attr != False:
self.scale = self.create_parameter(
attr=self._weight_attr,
shape=[num_features],
default_initializer=Constant(1.0),
is_bias=False)
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[num_features],
default_initializer=Constant(0.0),
is_bias=True)
else:
self.scale = None
self.bias = None
def _check_input_dim(self, input):
raise NotImplementedError("InstanceNorm Base error")
def forward(self, input):
self._check_input_dim(input)
return instance_norm(
input, weight=self.scale, bias=self.bias, eps=self._epsilon)
class InstanceNorm1d(_InstanceNormBase):
"""
Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
DataLayout: NCL `[batch, in_channels, length]`
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
\\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Note:
`H` means height of feature map, `W` means width of feature map.
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): A value added to the denominator for
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
track_running_stats(bool, optional): Whether to use global mean and
variance. In train mode, when setting track_running_stats True, the global mean
and variance are also used during train period. Default: False.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
- output: 3-D tensor with same shape as input x.
Returns:
None.
**Note**:
Momentum and track_running_stats is not effective. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
instance_norm = paddle.nn.InstanceNorm1d(2)
instance_norm_out = instance_norm(x)
print(instance_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 2 and len(input.shape) != 3:
raise ValueError('expected 2D or 3D input (got {}D input)'.format(
len(input.shape)))
class InstanceNorm2d(_InstanceNormBase):
"""
Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
DataLayout: NCHW `[batch, in_channels, in_height, in_width]`
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
\\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Note:
`H` means height of feature map, `W` means width of feature map.
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): A value added to the denominator for
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
track_running_stats(bool, optional): Whether to use global mean and
variance. In train mode, when setting track_running_stats True, the global mean
and variance are also used during train period. Default: False.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
- output: 4-D tensor with same shape as input x.
Returns:
None.
**Note**:
Momentum and track_running_stats is not effective. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
instance_norm = paddle.nn.InstanceNorm2d(2)
instance_norm_out = instance_norm(x)
print(instance_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 4:
raise ValueError('expected 4D input (got {}D input)'.format(
len(input.shape)))
class InstanceNorm3d(_InstanceNormBase):
"""
Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
\\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Note:
`H` means height of feature map, `W` means width of feature map.
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): A value added to the denominator for
numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
track_running_stats(bool, optional): Whether to use global mean and
variance. In train mode, when setting track_running_stats True, the global mean
and variance are also used during train period. Default: False.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
If the Initializer of the weight_attr is not set, the parameter is initialized
one. If it is set to False, will not create weight_attr. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
If it is set to None or one attribute of ParamAttr, instance_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
- output: 5-D tensor with same shape as input x.
Returns:
None.
**Note**:
Momentum and track_running_stats is not effective. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
instance_norm = paddle.nn.InstanceNorm3d(2)
instance_norm_out = instance_norm(x)
print(instance_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 5:
raise ValueError('expected 5D input (got {}D input)'.format(
len(input.shape)))
class GroupNorm(layers.Layer):
"""
This interface is used to construct a callable object of the ``GroupNorm`` class.
For more details, refer to code examples.
It implements the function of the Group Normalization Layer.
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Parameters:
num_channels(int): The number of channels of input.
num_groups(int): The number of groups that divided from channels.
epsilon(float, optional): The small value added to the variance to prevent
division by zero. Default: 1e-05.
weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
- output: 4-D tensor with same shape as input x.
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
x = paddle.to_tensor(x_data)
group_norm = paddle.nn.GroupNorm(num_channels=3, num_groups=6)
group_norm_out = group_norm(x)
print(group_norm_out.numpy)
"""
def __init__(self,
num_channels,
num_groups,
epsilon=1e-05,
weight_attr=None,
bias_attr=None,
data_layout='NCHW',
name=None):
super(GroupNorm, self).__init__()
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._epsilon = epsilon
self._num_channels = num_channels
self._num_groups = num_groups
if data_layout != 'NCHW':
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [self._num_channels]
self.weight = self.create_parameter(
attr=self._weight_attr or False,
shape=param_shape,
default_initializer=Constant(1.0))
self.bias = self.create_parameter(
attr=self._weight_attr or False, shape=param_shape, is_bias=True)
def forward(self, input):
inputs = {'X': input}
if self.bias is not None:
inputs['Bias'] = self.bias
if self.weight is not None:
inputs['Scale'] = self.weight
# create output
mean_out = self._helper.create_variable_for_type_inference(
dtype=input.dtype, stop_gradient=True)
variance_out = self._helper.create_variable_for_type_inference(
dtype=input.dtype, stop_gradient=True)
group_norm_out = self._helper.create_variable_for_type_inference(
dtype=input.dtype)
self._helper.append_op(
type="group_norm",
inputs=inputs,
outputs={
"Y": group_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": self._epsilon,
"groups": self._num_groups})
return self._helper.append_activation(group_norm_out, None)
class LayerNorm(layers.Layer):
"""
:alias_main: paddle.nn.LayerNorm
:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
:old_api: paddle.fluid.dygraph.LayerNorm
This interface is used to construct a callable object of the ``LayerNorm`` class.
For more details, refer to code examples.
It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
The formula is as follows:
.. math::
\\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
\\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
- :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
- :math:`H`: the number of hidden units in a layers
- :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
- :math:`g`: the trainable scale parameter.
- :math:`b`: the trainable bias parameter.
Parameters:
normalized_shape(int|list|tuple): Input shape from an expected input of
size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
If it is a single integer, this module will normalize over the last dimension
which is expected to be of that specific size.
epsilon(float, optional): The small value added to the variance to prevent
division by zero. Default: 1e-05.
weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
:attr:`param_attr` is initialized as 1 if it is added. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default: None.
name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 2-D, 3-D, 4-D or 5-D tensor.
- output: same shape as input x.
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
layer_norm = paddle.nn.LayerNorm(x_data.shape[1:])
layer_norm_out = layer_norm(x)
print(layer_norm_out.numpy)
"""
def __init__(self,
normalized_shape,
epsilon=1e-05,
weight_attr=None,
bias_attr=None,
name=None):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = [normalized_shape]
self._normalized_shape = list(normalized_shape)
self._epsilon = epsilon
self._weight_attr = weight_attr
self._bias_attr = bias_attr
param_shape = [np.prod(self._normalized_shape)]
if weight_attr is False:
self.weight = None
else:
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=param_shape,
default_initializer=Constant(1.0))
if bias_attr is False:
self.bias = None
else:
self.bias = self.create_parameter(
attr=self._bias_attr, shape=param_shape, is_bias=True)
def forward(self, input):
return layer_norm(
input,
normalized_shape=self._normalized_shape,
weight=self.weight,
bias=self.bias,
epsilon=self._epsilon)
class _BatchNormBase(layers.Layer):
"""
BatchNorm base .
"""
def __init__(self,
num_features,
momentum=0.9,
epsilon=1e-05,
weight_attr=None,
bias_attr=None,
data_format='NCHW',
track_running_stats=True,
name=None):
super(_BatchNormBase, self).__init__()
self._num_features = num_features
self._weight_attr = weight_attr
self._bias_attr = bias_attr
if get_default_dtype() == 'float16':
set_default_dtype('float32')
param_shape = [num_features]
# create parameter
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=param_shape,
default_initializer=Constant(1.0))
self.weight.stop_gradient = (self._weight_attr is False) or (
self._weight_attr and self._weight_attr.learning_rate == 0.)
self.bias = self.create_parameter(
attr=self._bias_attr, shape=param_shape, is_bias=True)
self.bias.stop_gradient = (self._bias_attr is False) or (
self._bias_attr and self._bias_attr.learning_rate == 0.)
moving_mean_name = None
moving_variance_name = None
if name is not None:
moving_mean_name = name + "_mean"
moving_variance_name = name + "_variance"
self._mean = self.create_parameter(
attr=ParamAttr(
name=moving_mean_name,
initializer=Constant(0.0),
trainable=False,
do_model_average=True),
shape=param_shape,
dtype=self._dtype)
self._mean.stop_gradient = True
self._variance = self.create_parameter(
attr=ParamAttr(
name=moving_variance_name,
initializer=Constant(1.0),
trainable=False,
do_model_average=True),
shape=param_shape,
dtype=self._dtype)
self._variance.stop_gradient = True
self._data_format = data_format
self._in_place = False
self._momentum = momentum
self._epsilon = epsilon
self._fuse_with_relu = False
self._track_running_stats = track_running_stats
def _check_input_dim(self, input):
raise NotImplementedError("BatchNorm Base error")
def forward(self, input):
self._check_input_dim(input)
if not self.training and not self._track_running_stats:
raise ValueError(
'When inference, expected track_running_stats is True.')
if self.training and not self._track_running_stats:
warnings.warn(
"When training, we now always track global mean and variance.")
return batch_norm(
input,
self._mean,
self._variance,
weight=self.weight,
bias=self.bias,
training=self.training,
momentum=self._momentum,
epsilon=self._epsilon,
data_format=self._data_format)
class BatchNorm1d(_BatchNormBase):
"""
Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
When track_running_stats = False, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
Calculated as follows:
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
When track_running_stats = True, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
They are global or running statistics (moving_mean and moving_variance). It usually got from the
pre-trained model. Calculated as follows:
.. math::
moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
The normalization function formula is as follows:
.. math::
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
- :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
- :math:`\\gamma` : trainable proportional parameter
- :math:`\\beta` : trainable deviation parameter
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
- output: 3-D tensor with same shape as input x.
Returns:
None.
**Note**:
Now track_running_stats is actucal always true. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 1, 3)).astype('float32')
x = paddle.to_tensor(x_data)
batch_norm = paddle.nn.BatchNorm1d(1)
batch_norm_out = batch_norm(x)
print(batch_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 2 and len(input.shape) != 3:
raise ValueError('expected 2D or 3D input (got {}D input)'.format(
len(input.shape)))
class BatchNorm2d(_BatchNormBase):
"""
Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
When track_running_stats = False, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
Calculated as follows:
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
When track_running_stats = True, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
They are global or running statistics (moving_mean and moving_variance). It usually got from the
pre-trained model. Calculated as follows:
.. math::
moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
The normalization function formula is as follows:
.. math::
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
- :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
- :math:`\\gamma` : trainable proportional parameter
- :math:`\\beta` : trainable deviation parameter
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
- output: 4-D tensor with same shape as input x.
Returns:
None
**Note**:
Now track_running_stats is actucal always true. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 1, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
batch_norm = paddle.nn.BatchNorm2d(1)
batch_norm_out = batch_norm(x)
print(batch_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 4:
raise ValueError('expected 4D input (got {}D input)'.format(
len(input.shape)))
class BatchNorm3d(_BatchNormBase):
"""
Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
When track_running_stats = False, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
Calculated as follows:
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
When track_running_stats = True, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
They are global or running statistics (moving_mean and moving_variance). It usually got from the
pre-trained model. Calculated as follows:
.. math::
moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
The normalization function formula is as follows:
.. math::
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
- :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
- :math:`\\gamma` : trainable proportional parameter
- :math:`\\beta` : trainable deviation parameter
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format, the data format can be "NCDHW". Default: NCDHW.
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
Shape:
- x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
- output: 5-D tensor with same shape as input x.
Returns:
None
**Note**:
Now track_running_stats is actucal always true. The next version will fix the problem .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np.random.seed(123)
x_data = np.random.random(size=(2, 1, 2, 2, 3)).astype('float32')
x = paddle.to_tensor(x_data)
batch_norm = paddle.nn.BatchNorm3d(1)
batch_norm_out = batch_norm(x)
print(batch_norm_out.numpy)
"""
def _check_input_dim(self, input):
if len(input.shape) != 5:
raise ValueError('expected 5D input (got {}D input)'.format(
len(input.shape)))
class SyncBatchNorm(layers.Layer):
"""
This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册