diff --git a/paddle/fluid/operators/dropout_impl.cu.h b/paddle/fluid/operators/dropout_impl.cu.h index 4261a5f2534c85e2d68a8ed44ad0b91a86b66667..96102b307c611ada62496900b47cc0695258b5fe 100644 --- a/paddle/fluid/operators/dropout_impl.cu.h +++ b/paddle/fluid/operators/dropout_impl.cu.h @@ -30,6 +30,7 @@ limitations under the License. */ #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/tensor_util.h" +#include "paddle/fluid/operators/dropout_impl_util.h" #include "paddle/fluid/operators/dropout_op.h" #include "paddle/fluid/platform/aligned_vector.h" #include "paddle/fluid/platform/gpu_launch_config.h" @@ -196,28 +197,8 @@ void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx, config.thread_per_block.x * vec_size) + 1) * vec_size; - int device_id = - BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()).GetDeviceId(); - auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id); - - if ((seed) && platform::is_gpu_place(seed->place())) { - framework::Tensor seed_cpu_tensor; - TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor); - seed_data = static_cast(seed_cpu_tensor.data()[0]); - increment = offset; - } else if (gen_cuda->GetIsInitPy() && (!is_fix_seed)) { - auto seed_offset = gen_cuda->IncrementOffset(offset); - seed_data = seed_offset.first; - increment = seed_offset.second; - } else { - if (seed) { - seed_data = *(seed->data()); - } else { - std::random_device rnd; - seed_data = is_fix_seed ? seed_val : rnd(); - } - increment = offset; - } + GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset, + &seed_data, &increment); #ifdef __HIPCC__ if (vec_size == 4 && size % 4 == 0) { diff --git a/paddle/fluid/operators/dropout_impl_util.h b/paddle/fluid/operators/dropout_impl_util.h new file mode 100644 index 0000000000000000000000000000000000000000..a7188efe7139c7bd26f18b474a610c3fc57a4116 --- /dev/null +++ b/paddle/fluid/operators/dropout_impl_util.h @@ -0,0 +1,53 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/fluid/framework/generator.h" +#include "paddle/fluid/framework/tensor_util.h" + +namespace paddle { +namespace operators { + +inline void GetSeedDataAndIncrement(const platform::CUDADeviceContext& dev_ctx, + const framework::Tensor* seed, + const bool is_fix_seed, const int seed_val, + const int offset, uint64_t* seed_data, + uint64_t* increment) { + int device_id = + BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()).GetDeviceId(); + auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id); + + if ((seed) && platform::is_gpu_place(seed->place())) { + framework::Tensor seed_cpu_tensor; + TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor); + *seed_data = static_cast(seed_cpu_tensor.data()[0]); + *increment = offset; + } else if (gen_cuda->GetIsInitPy() && (!is_fix_seed)) { + auto seed_offset = gen_cuda->IncrementOffset(offset); + *seed_data = seed_offset.first; + *increment = seed_offset.second; + } else { + if (seed) { + *seed_data = *(seed->data()); + } else { + std::random_device rnd; + *seed_data = is_fix_seed ? seed_val : rnd(); + } + *increment = offset; + } +} + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/fused/fused_dropout_helper.h b/paddle/fluid/operators/fused/fused_dropout_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..fcfa405a52f9b1a8d5f69f6affe10e88807ac8b5 --- /dev/null +++ b/paddle/fluid/operators/fused/fused_dropout_helper.h @@ -0,0 +1,282 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/fluid/framework/generator.h" +#include "paddle/fluid/operators/dropout_impl_util.h" +#include "paddle/fluid/operators/fused/fused_dropout_act_bias.h" +#include "paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h" +#include "paddle/fluid/operators/fused/fused_residual_dropout_bias.h" +#include "paddle/fluid/operators/math/functors.h" + +namespace paddle { +namespace operators { + +/** + * Support two Dropouts in the use senarieo. + * This warpper can be used in FFN op. + * The DropoutParam will be used in the fused_dropout_act_bias, + * fused_residual_dropout_bias(pre_layer_norm=ture) or + * fused_layernorm_residual_dropout_bias(pre_layer_norm=false). +*/ +struct DropoutParam { + uint64_t seed; + float dropout_prob; + bool is_upscale_in_train; + bool is_test; + bool fix_seed; + int increment; + const framework::Tensor* tensor_seed; + int seed_val; + + DropoutParam() { + fix_seed = false; + seed = 0; + is_test = false; + is_upscale_in_train = false; + dropout_prob = 0.5; + tensor_seed = nullptr; + seed_val = 0; + } + + /** + * dropout_index: can be 0, 1, 2. 0 means there is only one dropout, + * 1 and 2 represent two dropout, the parameter name of dropout + * will be "dropout" + dropout_index + param name, such as dropout1_seed, + * dropout1_is_test. + */ + DropoutParam(const framework::ExecutionContext& context, + const int dropout_index) { + std::string pre_fix = "dropout"; + std::string str_index = std::to_string(dropout_index); + if (dropout_index > 0) { + pre_fix = pre_fix + str_index + "_"; + } else { + pre_fix = pre_fix + "_"; + } + dropout_prob = context.Attr(pre_fix + "prob"); + auto& dropout_implementation = + context.Attr(pre_fix + "implementation"); + is_upscale_in_train = (dropout_implementation == "upscale_in_train"); + is_test = context.Attr(pre_fix + "is_test"); + fix_seed = context.Attr(pre_fix + "fix_seed"); + + std::string str_seed = "Dropout"; + if (dropout_index > 0) { + str_seed = str_seed + str_index + "Seed"; + } else { + str_seed = str_seed + "Seed"; + } + tensor_seed = + context.HasInput(str_seed) ? context.Input(str_seed) : nullptr; + seed_val = context.Attr(pre_fix + "seed"); + } + + int UpdateSeedAndIncrement(const platform::CUDADeviceContext& ctx, + const int offset) { + uint64_t tmp_increment; + GetSeedDataAndIncrement(ctx, tensor_seed, fix_seed, seed_val, offset, &seed, + &tmp_increment); + increment = static_cast(tmp_increment); + return increment; + } +}; + +template +class FusedDropoutHelper { + private: + int GetIncrement(const platform::CUDADeviceContext& ctx) { + const int VecSize = MAX_CACHE_BYTES / sizeof(T); + const int real_vec_size = cols_ % VecSize == 0 ? VecSize : 1; + auto config = + Get1DBlocksAnd2DGrids(ctx, static_cast(rows_), + static_cast(cols_), real_vec_size); + int increment = ((cols_ - 1) / (config.thread_per_block.x * + config.block_per_grid.x * real_vec_size) + + 1) * + real_vec_size; + increment = dropout_param_.UpdateSeedAndIncrement(ctx, increment); + return increment; + } + + public: + FusedDropoutHelper() {} + FusedDropoutHelper(const platform::CUDADeviceContext& ctx, const int rows, + const int cols, const DropoutParam& dropout_param) { + rows_ = rows; + cols_ = cols; + dropout_param_ = dropout_param; + } + + // out = residual + dropout( src + bias ) + void ResidualDropoutBias(const platform::CUDADeviceContext& ctx, const T* src, + const T* residual, const T* bias, T* out, + MaskType* mask) { + auto increment = GetIncrement(ctx); + LaunchResidualDropoutBias( + rows_, cols_, increment, dropout_param_.seed, + dropout_param_.dropout_prob, dropout_param_.is_test, + dropout_param_.is_upscale_in_train, src, residual, bias, mask, out, + ctx); + } + + void ResidualDropoutBiasGrad(const platform::CUDADeviceContext& ctx, + const T* d_out, const MaskType* mask, T* d_src, + T* d_residual, T* d_bias) { + LaunchResidualDropoutBiasGrad( + d_out, mask, dropout_param_.dropout_prob, + dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx); + auto cuda_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()); + memory::Copy(cuda_place, d_residual, cuda_place, d_out, + rows_ * cols_ * sizeof(T), ctx.stream()); + } + + // out = dropout(activation(src + bias)) + void DropoutActBias(const platform::CUDADeviceContext& ctx, const T* src, + const T* bias, const std::string& act_method, T* out, + MaskType* mask) { + auto increment = GetIncrement(ctx); + if (act_method == "gelu") { + GeluFunctor gelu; + LaunchDropoutActBias>( + gelu, dropout_param_.seed, rows_, cols_, dropout_param_.increment, + dropout_param_.dropout_prob, dropout_param_.is_upscale_in_train, + dropout_param_.is_test, src, bias, out, mask, ctx); + } else if (act_method == "relu") { + math::ReluFunctor relu; + LaunchDropoutActBias>( + relu, dropout_param_.seed, rows_, cols_, increment, + dropout_param_.dropout_prob, dropout_param_.is_upscale_in_train, + dropout_param_.is_test, src, bias, out, mask, ctx); + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Currently only supports gelu or relu activation functions!")); + } + } + + void DropoutActBiasGrad(const platform::CUDADeviceContext& ctx, const T* dout, + const T* src, const T* bias, const MaskType* mask, + T* d_src, T* d_bias, const std::string& act_method) { + if (act_method == "gelu") { + GeluGradFunctor gelu_grad; + LaunchDropoutActBiasGrad>( + gelu_grad, dout, mask, src, bias, dropout_param_.dropout_prob, + dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx); + } else if (act_method == "relu") { + math::ReluGradFunctor relu_grad; + LaunchDropoutActBiasGrad>( + relu_grad, dout, mask, src, bias, dropout_param_.dropout_prob, + dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx); + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Currently only supports gelu or relu activation functions!")); + } + } + + protected: + int rows_; + int cols_; + DropoutParam dropout_param_; +}; + +template +class FusedDropoutLayerNormHelper : public FusedDropoutHelper { + public: + FusedDropoutLayerNormHelper() {} + FusedDropoutLayerNormHelper(const int rows, const int cols, + const float epsilon) { + using U = LayerNormParamType; + this->rows_ = rows; + this->cols_ = cols; + epsilon_ = epsilon; + } + + FusedDropoutLayerNormHelper(const platform::CUDADeviceContext& ctx, + const int rows, const int cols, + const DropoutParam& dropout_param, + const float epsilon) + : FusedDropoutHelper(ctx, rows, cols, dropout_param) { + using U = LayerNormParamType; + epsilon_ = epsilon; + } + + // call layer_norm + void LayerNorm(const platform::CUDADeviceContext& ctx, const T* src, + const LayerNormParamType* gamma, + const LayerNormParamType* beta, T* out, + LayerNormParamType* mean, LayerNormParamType* variance) { + using U = LayerNormParamType; + switch (GetDesiredBlockDim(this->cols_)) { + FIXED_BLOCK_DIM_CASE( + LayerNormForward< + T, U, kBlockDim><<rows_, kBlockDim, 0, ctx.stream()>>>( + src, gamma, beta, out, mean, variance, epsilon_, this->cols_)); + } + } + + void LayerNormGrad(const platform::CUDADeviceContext& ctx, const T* dout, + const T* src, const LayerNormParamType* gamma, + const LayerNormParamType* mean, + const LayerNormParamType* variance, T* d_src, + LayerNormParamType* d_scale, + LayerNormParamType* d_bias) { + using U = LayerNormParamType; + LayerNormBackward(src, dout, gamma, mean, variance, d_src, d_scale, + d_bias, epsilon_, this->rows_, this->cols_, ctx); + } + + // out = layernorm(residual + dropout(src + bias)) + void LayernormResidualDropoutBias( + const platform::CUDADeviceContext& ctx, const T* src, const T* residual, + const T* bias, const LayerNormParamType* gamma, + const LayerNormParamType* beta, T* dropout_out, MaskType* mask, T* out, + LayerNormParamType* mean, LayerNormParamType* variance) { + using U = LayerNormParamType; + int vec_size = MAX_CACHE_BYTES / sizeof(T); + if (this->cols_ % vec_size != 0) { + vec_size = 1; + } + int threads = GetDesiredBlockDim(this->cols_ / vec_size); + int increment = ((this->cols_ - 1) / (threads * vec_size) + 1) * vec_size; + increment = this->dropout_param_.UpdateSeedAndIncrement(ctx, increment); + LaunchLayernormResidualDropoutBias( + this->rows_, this->cols_, increment, this->dropout_param_.seed, + this->dropout_param_.dropout_prob, epsilon_, + this->dropout_param_.is_upscale_in_train, this->dropout_param_.is_test, + src, residual, bias, gamma, beta, mask, dropout_out, out, mean, + variance, ctx); + } + + void LayernormResidualDropoutBiasGrad( + const platform::CUDADeviceContext& ctx, const T* d_out, + const T* layernorm_src, const MaskType* mask, + const LayerNormParamType* gamma, const LayerNormParamType* mean, + const LayerNormParamType* variance, T* d_layernorm_src, + LayerNormParamType* d_scale, LayerNormParamType* d_layernorm_bias, + T* d_dropout_src, T* d_bias, T* d_residual) { + using U = LayerNormParamType; + LayerNormBackward(layernorm_src, d_out, gamma, mean, variance, + d_layernorm_src, d_scale, d_layernorm_bias, + epsilon_, this->rows_, this->cols_, ctx); + this->ResidualDropoutBiasGrad(ctx, d_layernorm_src, mask, d_dropout_src, + d_residual, d_bias); + } + + protected: + float epsilon_; +}; + +} // namespace operators +} // namespace paddle