Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
0067a2e4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
0067a2e4
编写于
8月 08, 2020
作者:
G
gongweibao
提交者:
GitHub
8月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Save checkpoint automatically (#25917)
上级
e853ece0
变更
18
展开全部
显示空白变更内容
内联
并排
Showing
18 changed file
with
1933 addition
and
269 deletion
+1933
-269
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+7
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+22
-1
python/paddle/fluid/incubate/checkpoint/__init__.py
python/paddle/fluid/incubate/checkpoint/__init__.py
+13
-0
python/paddle/fluid/incubate/checkpoint/auto_checkpoint.py
python/paddle/fluid/incubate/checkpoint/auto_checkpoint.py
+687
-0
python/paddle/fluid/incubate/checkpoint/checkpoint_saver.py
python/paddle/fluid/incubate/checkpoint/checkpoint_saver.py
+223
-0
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+21
-165
python/paddle/fluid/incubate/fleet/utils/fs.py
python/paddle/fluid/incubate/fleet/utils/fs.py
+20
-4
python/paddle/fluid/incubate/fleet/utils/hdfs.py
python/paddle/fluid/incubate/fleet/utils/hdfs.py
+159
-72
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+20
-8
python/paddle/fluid/tests/unittests/auto_checkpoint_utils.py
python/paddle/fluid/tests/unittests/auto_checkpoint_utils.py
+131
-0
python/paddle/fluid/tests/unittests/test_auto_checkpoint.py
python/paddle/fluid/tests/unittests/test_auto_checkpoint.py
+357
-0
python/paddle/fluid/tests/unittests/test_auto_checkpoint2.py
python/paddle/fluid/tests/unittests/test_auto_checkpoint2.py
+77
-0
python/paddle/fluid/tests/unittests/test_checkpoint_saver.py
python/paddle/fluid/tests/unittests/test_checkpoint_saver.py
+57
-0
python/paddle/fluid/tests/unittests/test_desc_clone.py
python/paddle/fluid/tests/unittests/test_desc_clone.py
+2
-1
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
+30
-10
python/paddle/fluid/tests/unittests/test_fs_interface.py
python/paddle/fluid/tests/unittests/test_fs_interface.py
+3
-1
python/paddle/fluid/tests/unittests/test_hdfs.py
python/paddle/fluid/tests/unittests/test_hdfs.py
+103
-7
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/fluid/executor.py
浏览文件 @
0067a2e4
...
...
@@ -25,11 +25,13 @@ import six
from
.data_feeder
import
convert_dtype
from
.framework
import
Program
,
default_main_program
,
Variable
,
Operator
,
convert_np_dtype_to_dtype_
from
.
import
core
from
.
import
unique_name
from
.
import
compiler
from
..
import
compat
as
cpt
from
.trainer_factory
import
TrainerFactory
from
.trainer_factory
import
FetchHandlerMonitor
import
copy
from
.incubate.checkpoint
import
auto_checkpoint
as
acp
__all__
=
[
'Executor'
,
'global_scope'
,
'scope_guard'
]
...
...
@@ -559,6 +561,9 @@ class Executor(object):
self
.
_closed
=
False
self
.
pruned_program_scope_caches
=
dict
()
self
.
_auto_checkpoint_name
=
unique_name
.
generate
(
"__auto_checkpoint_executor__"
)
def
_get_scope_cache
(
self
,
program_cache_key
):
return
self
.
scope_caches
.
get
(
program_cache_key
,
None
)
...
...
@@ -1152,6 +1157,8 @@ class Executor(object):
compiled
=
isinstance
(
program
,
compiler
.
CompiledProgram
)
acp
.
_auto_checkpoint
(
self
,
program
)
# For backward compatibility, run directly.
if
not
compiled
:
# In distributed training, the compiled program is saved in Program._graph
...
...
python/paddle/fluid/framework.py
浏览文件 @
0067a2e4
...
...
@@ -2385,10 +2385,27 @@ class Operator(object):
def
_is_optimize_op
(
self
):
op_maker
=
core
.
op_proto_and_checker_maker
OPTIMIZE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
not
self
.
desc
.
has_attr
(
op_maker
.
kOpRoleAttrName
()):
return
False
op_role
=
self
.
desc
.
attr
(
op_maker
.
kOpRoleAttrName
())
if
op_role
&
int
(
OPTIMIZE
):
return
True
else
:
return
False
def
_is_backward_op
(
self
):
op_maker
=
core
.
op_proto_and_checker_maker
BACKWARD
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
if
not
self
.
desc
.
has_attr
(
op_maker
.
kOpRoleAttrName
()):
return
False
op_role
=
self
.
desc
.
attr
(
op_maker
.
kOpRoleAttrName
())
if
op_role
&
int
(
BACKWARD
):
return
True
return
False
...
...
@@ -3942,6 +3959,10 @@ class Program(object):
# appending gradients times
self
.
_appending_grad_times
=
0
# identifier for auto checkpoint
self
.
_auto_checkpoint_name
=
unique_name
.
generate
(
"__auto_checkpoint_program__"
)
# compiled program, i.e. Graph
self
.
_graph
=
None
...
...
python/paddle/fluid/incubate/checkpoint/__init__.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
python/paddle/fluid/incubate/checkpoint/auto_checkpoint.py
0 → 100644
浏览文件 @
0067a2e4
此差异已折叠。
点击以展开。
python/paddle/fluid/incubate/checkpoint/checkpoint_saver.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
..fleet.utils.fs
import
FS
,
LocalFS
from
..fleet.utils.hdfs
import
HDFSClient
from
...compiler
import
CompiledProgram
class
SerializableBase
(
object
):
def
serialize
(
self
,
path
):
raise
NotImplementedError
def
deserialize
(
self
,
path
):
raise
NotImplementedError
class
PaddleModel
(
SerializableBase
):
def
__init__
(
self
,
exe
,
program
):
self
.
_exe
=
exe
self
.
_origin_program
=
program
self
.
_program
=
program
if
isinstance
(
program
,
CompiledProgram
):
self
.
_program
=
program
.
_program
self
.
_file_name
=
"_paddle_fleet_param__"
def
serialize
(
self
,
path
):
from
...io
import
save_persistables
save_persistables
(
executor
=
self
.
_exe
,
dirname
=
path
,
main_program
=
self
.
_program
,
filename
=
self
.
_file_name
)
def
deserialize
(
self
,
path
):
from
...io
import
load_persistables
load_persistables
(
executor
=
self
.
_exe
,
dirname
=
path
,
main_program
=
self
.
_program
,
filename
=
self
.
_file_name
)
class
CheckpointSaver
(
object
):
def
__init__
(
self
,
fs
):
self
.
_fs
=
fs
self
.
_checkpoint_prefix
=
"__paddle_checkpoint__"
def
save_checkpoint
(
self
,
path
,
slists
,
trainer_id
=
None
,
local_cache_path
=
".cache"
):
"""
Serialize objects in slists to path
Return really saved path and checkpoint_no
"""
if
not
self
.
_fs
.
is_exist
(
path
):
self
.
_fs
.
mkdirs
(
path
)
else
:
assert
self
.
_fs
.
is_dir
(
path
),
"path:{} must be a directory"
.
format
(
path
)
max_no
=
self
.
_get_last_checkpoint_no
(
path
)
if
max_no
<
0
:
max_no
=
-
1
max_no
+=
1
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkpoint_prefix
,
max_no
)
tmp_path
=
"{}.tmp"
.
format
(
real_path
)
saved_path
=
tmp_path
local_fs
=
LocalFS
()
cache_path
=
None
if
self
.
_fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.saved_cache"
.
format
(
local_cache_path
,
self
.
_checkpoint_prefix
,
max_no
)
if
trainer_id
is
not
None
:
cache_path
=
"{}.{}"
.
format
(
cache_path
,
trainer_id
)
if
not
local_fs
.
is_exist
(
cache_path
):
local_fs
.
mkdirs
(
cache_path
)
else
:
assert
local_fs
.
is_dir
(
cache_path
),
\
"cache path:{} must be a directory"
.
format
(
cache_path
)
saved_path
=
cache_path
for
s
in
slists
:
s
.
serialize
(
saved_path
)
if
self
.
_fs
.
need_upload_download
():
self
.
_fs
.
delete
(
tmp_path
)
self
.
_fs
.
upload
(
cache_path
,
tmp_path
)
local_fs
.
delete
(
cache_path
)
self
.
_fs
.
mv
(
tmp_path
,
real_path
)
return
real_path
,
max_no
def
load_checkpoint
(
self
,
path
,
slists
,
trainer_id
,
local_cache_path
=
".cache"
,
checkpoint_no
=
None
,
ignore_empty
=
True
):
"""
Deserialize objects in slists from path
Return really load path
"""
if
checkpoint_no
is
None
:
max_no
=
self
.
_get_last_checkpoint_no
(
path
)
if
not
ignore_empty
:
assert
max_no
>=
0
,
"Can't find checkpoint"
if
max_no
<
0
:
return
None
checkpoint_no
=
max_no
else
:
assert
isinstance
(
checkpoint_no
,
int
)
assert
checkpoint_no
>=
0
local_fs
=
LocalFS
()
if
self
.
_fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.load_cache"
.
format
(
local_cache_path
,
self
.
_checkpoint_prefix
,
checkpoint_no
)
if
trainer_id
is
not
None
:
cache_path
=
"{}.{}"
.
format
(
cache_path
,
trainer_id
)
if
not
local_fs
.
is_exist
(
local_cache_path
):
local_fs
.
mkdirs
(
local_cache_path
)
if
local_fs
.
is_exist
(
cache_path
):
local_fs
.
delete
(
cache_path
)
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkpoint_prefix
,
checkpoint_no
)
load_path
=
real_path
if
self
.
_fs
.
need_upload_download
():
self
.
_fs
.
download
(
real_path
,
cache_path
)
load_path
=
cache_path
for
s
in
slists
:
s
.
deserialize
(
load_path
)
if
self
.
_fs
.
need_upload_download
()
and
cache_path
:
local_fs
.
delete
(
cache_path
)
return
real_path
def
get_checkpoint_no
(
self
,
root_path
):
a
=
[]
dirs
=
self
.
_fs
.
list_dirs
(
root_path
)
for
d
in
dirs
:
g
=
d
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
self
.
_checkpoint_prefix
:
continue
try
:
n
=
int
(
g
[
1
])
a
.
append
(
n
)
except
:
continue
a
.
sort
()
return
a
def
_get_last_checkpoint_no
(
self
,
root_path
):
"""
only get the first depth
"""
a
=
self
.
get_checkpoint_no
(
root_path
)
if
len
(
a
)
>
0
:
return
a
[
-
1
]
return
-
1
def
clean_redundant_checkpoints
(
self
,
root_path
,
reserved
=
[]):
max_no
=
self
.
_get_last_checkpoint_no
(
root_path
)
if
max_no
<
0
:
return
s
=
set
(
reserved
)
if
len
(
s
)
==
0
:
s
.
add
(
max_no
)
dirs
=
self
.
_fs
.
list_dirs
(
root_path
)
for
d
in
dirs
:
g
=
d
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
self
.
_checkpoint_prefix
:
continue
try
:
n
=
int
(
g
[
1
])
if
n
not
in
s
:
path
=
"{}/{}.{}"
.
format
(
root_path
,
self
.
_checkpoint_prefix
,
n
)
self
.
_fs
.
delete
(
path
)
except
Exception
as
e
:
print
(
e
)
continue
python/paddle/fluid/incubate/fleet/collective/__init__.py
浏览文件 @
0067a2e4
...
...
@@ -27,6 +27,7 @@ from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer
from
paddle.fluid
import
compiler
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
PaddleModel
,
CheckpointSaver
import
os
import
sys
...
...
@@ -46,21 +47,6 @@ class DistFCConfig(object):
pass
class
TrainStatus
(
object
):
def
__init__
(
self
,
epoch_no
=-
1
):
# completed epoch
self
.
_epoch_no
=
epoch_no
def
next
(
self
):
return
self
.
_epoch_no
+
1
def
__eq__
(
self
,
t
):
return
self
.
_epoch_no
==
t
.
_epoch_no
def
__ne__
(
self
,
t
):
return
not
self
==
t
class
Collective
(
Fleet
):
def
__init__
(
self
):
super
(
Collective
,
self
).
__init__
(
Mode
.
COLLECTIVE
)
...
...
@@ -152,90 +138,10 @@ class Collective(Fleet):
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
filename
=
filename
)
def
_save_train_status
(
self
,
path
,
train_status
):
d
=
{}
d
[
"epoch_no"
]
=
train_status
.
_epoch_no
file_name
=
"{}/fleet_train_status"
.
format
(
path
)
with
open
(
file_name
,
'w'
)
as
f
:
json
.
dump
(
d
,
f
)
def
_load_train_status
(
self
,
path
):
file_name
=
"{}/fleet_train_status"
.
format
(
path
)
r
=
TrainStatus
()
if
not
os
.
path
.
isfile
(
file_name
):
return
r
d
=
{}
with
open
(
file_name
,
'r'
)
as
f
:
d
=
json
.
load
(
f
)
assert
"epoch_no"
in
d
,
"Can't find epoch_no in dict from train_status file:{}"
.
format
(
d
)
r
.
_epoch_no
=
d
[
"epoch_no"
]
assert
r
.
_epoch_no
>=
0
,
"Data in checkpoint file is not valid:{}"
.
format
(
d
)
return
r
def
_get_last_checkpoint_no
(
self
,
root_path
,
fs
):
"""
only get the first depth
"""
max_no
=
-
1
d
=
{}
dirs
=
fs
.
list_dirs
(
root_path
)
for
d
in
dirs
:
g
=
d
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
"__paddle_fleet_checkpoint__"
:
continue
try
:
n
=
int
(
g
[
1
])
if
n
>
max_no
:
max_no
=
n
except
:
continue
return
max_no
def
clean_redundant_checkpoints
(
self
,
root_path
,
fs
=
LocalFS
(),
checkpoint_num
=
1
):
max_no
=
self
.
_get_last_checkpoint_no
(
root_path
,
fs
)
if
max_no
<
0
:
return
if
checkpoint_num
<
1
:
checkpoint_num
=
1
dirs
=
fs
.
list_dirs
(
root_path
)
for
d
in
dirs
:
g
=
d
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
self
.
_checkpoint_prefix
:
continue
try
:
n
=
int
(
g
[
1
])
if
n
<=
max_no
-
checkpoint_num
:
path
=
"{}/{}.{}"
.
format
(
root_path
,
self
.
_checkpoint_prefix
,
n
)
fs
.
delete
(
path
)
except
Exception
as
e
:
print
(
e
)
continue
def
save_checkpoint
(
self
,
executor
,
path
,
trainer_id
,
train_status
,
main_program
=
None
,
fs
=
LocalFS
(),
...
...
@@ -248,53 +154,25 @@ class Collective(Fleet):
if
main_program
==
None
:
main_program
=
self
.
_transpiled_program
if
not
fs
.
is_exist
(
path
):
fs
.
mkdirs
(
path
)
else
:
assert
fs
.
is_dir
(
path
),
"path:%s must be a directory"
.
format
(
path
)
max_no
=
self
.
_get_last_checkpoint_no
(
path
,
fs
=
fs
)
if
max_no
<
0
:
max_no
=
-
1
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkpoint_prefix
,
max_no
+
1
)
tmp_path
=
"{}.tmp"
.
format
(
real_path
)
saved_path
=
tmp_path
local_fs
=
LocalFS
()
cache_path
=
None
if
fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.saved_cache"
.
format
(
local_cache_path
,
self
.
_checkpoint_prefix
,
max_no
+
1
)
if
not
local_fs
.
is_exist
(
cache_path
):
local_fs
.
mkdirs
(
cache_path
)
else
:
assert
fs
.
is_dir
(
path
),
"cache path:{} must be a directory"
.
format
(
cache_path
)
saved_path
=
cache_path
self
.
save_persistables
(
executor
=
executor
,
dirname
=
saved_path
,
main_program
=
main_program
,
filename
=
self
.
_param_file_name
)
self
.
_save_train_status
(
path
=
saved_path
,
train_status
=
train_status
)
if
fs
.
need_upload_download
():
fs
.
delete
(
tmp_path
)
fs
.
upload
(
cache_path
,
tmp_path
)
fs
.
mv
(
tmp_path
,
real_path
)
m
=
PaddleModel
(
executor
,
main_program
)
t
=
train_status
c
=
CheckpointSaver
(
fs
)
real_path
,
checkpoint_no
=
c
.
save_checkpoint
(
path
=
path
,
slists
=
[
m
,
t
],
trainer_id
=
trainer_id
,
local_cache_path
=
local_cache_path
)
if
not
remain_all_checkpoint
:
self
.
clean_redundant_checkpoints
(
path
)
c
.
clean_redundant_checkpoints
(
path
)
return
real_path
,
checkpoint_no
def
load_checkpoint
(
self
,
executor
,
path
,
trainer_id
,
train_status
,
main_program
=
None
,
fs
=
LocalFS
(),
local_cache_path
=
".cache"
,
...
...
@@ -302,39 +180,17 @@ class Collective(Fleet):
"""
This function load persistables and current epoch num from path.
"""
max_no
=
self
.
_get_last_checkpoint_no
(
path
,
fs
)
if
not
ignore_empty
:
assert
max_no
>=
0
,
"Can't find checkpoint"
if
max_no
<
0
:
return
None
local_fs
=
LocalFS
()
if
fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.load_cache.{}"
.
format
(
local_cache_path
,
self
.
_checkpoint_prefix
,
max_no
,
trainer_id
)
if
not
local_fs
.
is_exist
(
local_cache_path
):
local_fs
.
mkdirs
(
local_cache_path
)
if
local_fs
.
is_exist
(
cache_path
):
local_fs
.
delete
(
cache_path
)
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkpoint_prefix
,
max_no
)
load_path
=
real_path
if
fs
.
need_upload_download
():
fs
.
download
(
real_path
,
cache_path
)
load_path
=
cache_path
if
main_program
==
None
:
main_program
=
self
.
_transpiled_program
io
.
load_persistables
(
executor
=
executor
,
dirname
=
load_path
,
main_program
=
main_program
,
filename
=
self
.
_param_file_name
)
return
self
.
_load_train_status
(
load
_path
)
m
=
PaddleModel
(
executor
,
main_program
)
c
=
CheckpointSaver
(
fs
)
return
c
.
load_checkpoint
(
path
,
[
m
,
train_status
]
,
trainer_id
=
trainer_id
,
ignore_empty
=
ignore_empty
,
local_cache_path
=
local_cache
_path
)
fleet
=
Collective
()
...
...
python/paddle/fluid/incubate/fleet/utils/fs.py
浏览文件 @
0067a2e4
...
...
@@ -45,6 +45,10 @@ class FSTimeOut(Exception):
pass
class
FSShellCmdAborted
(
ExecuteError
):
pass
class
FS
(
object
):
@
abc
.
abstractmethod
def
ls_dir
(
self
,
fs_path
):
...
...
@@ -87,7 +91,7 @@ class FS(object):
raise
NotImplementedError
@
abc
.
abstractmethod
def
mv
(
self
,
fs_src_path
,
fs_dst_path
):
def
mv
(
self
,
fs_src_path
,
fs_dst_path
,
overwrite
=
False
,
test_exists
=
False
):
raise
NotImplementedError
@
abc
.
abstractmethod
...
...
@@ -98,6 +102,10 @@ class FS(object):
def
list_dirs
(
self
,
fs_path
):
raise
NotImplementedError
@
abc
.
abstractmethod
def
touch
(
self
,
fs_path
,
exist_ok
=
True
):
raise
NotImplementedError
class
LocalFS
(
FS
):
def
ls_dir
(
self
,
fs_path
):
...
...
@@ -138,13 +146,21 @@ class LocalFS(FS):
def
is_exist
(
self
,
fs_path
):
return
os
.
path
.
exists
(
fs_path
)
def
touch
(
self
,
fs_path
):
return
Path
(
fs_path
).
touch
()
def
touch
(
self
,
fs_path
,
exist_ok
=
True
):
if
self
.
is_exist
(
fs_path
):
if
exist_ok
:
return
raise
FSFileExistsError
def
mv
(
self
,
src_path
,
dst_path
):
return
Path
(
fs_path
).
touch
(
exist_ok
=
True
)
def
mv
(
self
,
src_path
,
dst_path
,
overwrite
=
False
,
test_exists
=
False
):
if
not
self
.
is_exist
(
src_path
):
raise
FSFileNotExistsError
if
overwrite
and
self
.
is_exist
(
dst_path
):
self
.
delete
(
dst_path
)
if
self
.
is_exist
(
dst_path
):
raise
FSFileExistsError
...
...
python/paddle/fluid/incubate/fleet/utils/hdfs.py
浏览文件 @
0067a2e4
...
...
@@ -26,8 +26,8 @@ import time
import
logging
import
six
from
.
import
fs
from
.fs
import
FS
,
LocalFS
,
FSFileExistsError
,
FSFileNotExistsError
,
ExecuteError
,
FSTimeOut
import
paddle.fluid
as
fluid
from
.fs
import
FS
,
LocalFS
,
FSFileExistsError
,
FSFileNotExistsError
,
ExecuteError
,
FSTimeOut
,
FSShellCmdAborted
from
paddle.fluid
import
core
import
functools
from
pathlib
import
PurePosixPath
,
Path
...
...
@@ -36,21 +36,39 @@ import shutil
__all__
=
[
"HDFSClient"
]
def
_handle_errors
(
f
):
def
_handle_errors
(
max_time_out
=
None
):
def
decorator
(
f
):
@
functools
.
wraps
(
f
)
def
handler
(
*
args
,
**
kwargs
):
o
=
args
[
0
]
time_out
=
max_time_out
if
time_out
is
None
:
time_out
=
float
(
o
.
_time_out
)
/
1000.0
else
:
time_out
/=
1000.0
inter
=
float
(
o
.
_sleep_inter
)
/
1000.0
start
=
time
.
time
()
last_print_time
=
start
while
True
:
try
:
return
f
(
*
args
,
**
kwargs
)
#important: only ExecuteError need to retry
except
ExecuteError
as
e
:
o
=
args
[
0
]
time_out
=
float
(
o
.
_time_out
)
/
1000.0
inter
=
float
(
o
.
_sleep_inter
)
/
1000.0
if
time
.
time
()
-
start
>=
time_out
:
raise
FSTimeOut
raise
FSTimeOut
(
"args:{} timeout:{}"
.
format
(
args
,
time
.
time
()
-
start
))
time
.
sleep
(
inter
)
return
functools
.
wraps
(
f
)(
handler
)
if
time
.
time
()
-
last_print_time
>
30
:
print
(
"hadoop operator timeout:args:{} timeout:{}"
.
format
(
args
,
time
.
time
()
-
start
))
last_print_time
=
time
.
time
()
return
handler
return
decorator
class
HDFSClient
(
FS
):
...
...
@@ -72,6 +90,7 @@ class HDFSClient(FS):
if
configs
:
for
k
,
v
in
six
.
iteritems
(
configs
):
config_command
=
'-D%s=%s'
%
(
k
,
v
)
self
.
pre_commands
.
append
(
config_command
)
self
.
_time_out
=
time_out
self
.
_sleep_inter
=
sleep_inter
...
...
@@ -80,17 +99,22 @@ class HDFSClient(FS):
r
'\s?responseErrorMsg\s?\:.*, errorCode\:\s?[0-9]+, path\:'
)
def
_run_cmd
(
self
,
cmd
,
redirect_stderr
=
False
):
ret
,
output
=
fluid
.
core
.
shell_execute_cmd
(
cmd
,
0
,
0
,
redirect_stderr
)
return
int
(
ret
),
output
.
splitlines
()
exe_cmd
=
"{} -{}"
.
format
(
self
.
_base_cmd
,
cmd
)
ret
,
output
=
core
.
shell_execute_cmd
(
exe_cmd
,
0
,
0
,
redirect_stderr
)
ret
=
int
(
ret
)
if
ret
==
134
:
raise
FSShellCmdAborted
(
cmd
)
return
ret
,
output
.
splitlines
()
@
_handle_errors
()
def
list_dirs
(
self
,
fs_path
):
if
not
self
.
is_exist
(
fs_path
):
return
[]
dirs
,
_
=
self
.
ls_dir
(
fs_path
)
dirs
,
files
=
self
.
_
ls_dir
(
fs_path
)
return
dirs
@
_handle_errors
@
_handle_errors
()
def
ls_dir
(
self
,
fs_path
):
"""
list directory under fs_path, and only give the pure name, not include the fs_path
...
...
@@ -98,11 +122,14 @@ class HDFSClient(FS):
if
not
self
.
is_exist
(
fs_path
):
return
[],
[]
cmd
=
"{} -ls {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
return
self
.
_ls_dir
(
fs_path
)
def
_ls_dir
(
self
,
fs_path
):
cmd
=
"ls {}"
.
format
(
fs_path
)
ret
,
lines
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
dirs
=
[]
files
=
[]
...
...
@@ -111,9 +138,6 @@ class HDFSClient(FS):
if
len
(
arr
)
!=
8
:
continue
if
fs_path
not
in
arr
[
7
]:
continue
p
=
PurePosixPath
(
arr
[
7
])
if
arr
[
0
][
0
]
==
'd'
:
dirs
.
append
(
p
.
name
)
...
...
@@ -130,18 +154,20 @@ class HDFSClient(FS):
return
None
@
_handle_errors
@
_handle_errors
()
def
is_dir
(
self
,
fs_path
):
if
not
self
.
is_exist
(
fs_path
):
return
False
cmd
=
"{} -test -d {}"
.
format
(
self
.
_base_cmd
,
fs_path
,
redirect_stderr
=
True
)
return
self
.
_is_dir
(
fs_path
)
def
_is_dir
(
self
,
fs_path
):
cmd
=
"test -d {}"
.
format
(
fs_path
,
redirect_stderr
=
True
)
ret
,
lines
=
self
.
_run_cmd
(
cmd
)
if
ret
:
# other error
if
self
.
_test_match
(
lines
)
!=
None
:
raise
ExecuteError
if
self
.
_test_match
(
lines
):
raise
ExecuteError
(
cmd
)
return
False
...
...
@@ -151,94 +177,155 @@ class HDFSClient(FS):
if
not
self
.
is_exist
(
fs_path
):
return
False
return
not
self
.
is_dir
(
fs_path
)
return
not
self
.
_
is_dir
(
fs_path
)
@
_handle_errors
@
_handle_errors
()
def
is_exist
(
self
,
fs_path
):
cmd
=
"
{} -ls {} "
.
format
(
self
.
_base_cmd
,
fs_path
)
cmd
=
"
ls {} "
.
format
(
fs_path
)
ret
,
out
=
self
.
_run_cmd
(
cmd
,
redirect_stderr
=
True
)
if
ret
!=
0
:
for
l
in
out
:
if
"No such file or directory"
in
l
:
return
False
raise
ExecuteError
raise
ExecuteError
(
cmd
)
return
True
@
_handle_errors
# can't retry
def
upload
(
self
,
local_path
,
fs_path
):
if
self
.
is_exist
(
fs_path
):
raise
FSFileExistsError
raise
FSFileExistsError
(
"{} exists"
.
format
(
fs_path
))
local
=
LocalFS
()
if
not
local
.
is_exist
(
local_path
):
raise
FSFileNotExistsError
raise
FSFileNotExistsError
(
"{} not exists"
.
format
(
local_path
))
cmd
=
"{} -put {} {}"
.
format
(
self
.
_base_cmd
,
local_path
,
fs_path
)
return
self
.
_try_upload
(
local_path
,
fs_path
)
@
_handle_errors
()
def
_try_upload
(
self
,
local_path
,
fs_path
):
cmd
=
"put {} {}"
.
format
(
local_path
,
fs_path
)
ret
=
0
try
:
ret
,
lines
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
except
Exception
as
e
:
self
.
delete
(
fs_path
)
raise
e
@
_handle_errors
# can't retry
def
download
(
self
,
fs_path
,
local_path
):
if
self
.
is_exist
(
local_path
):
raise
FSFileExistsError
raise
FSFileExistsError
(
"{} exists"
.
format
(
local_path
))
if
not
self
.
is_exist
(
fs_path
):
raise
FSFileNotExistsError
raise
FSFileNotExistsError
(
"{} not exits"
.
format
(
fs_path
))
return
self
.
_try_download
(
fs_path
,
local_path
)
cmd
=
"{} -get {} {}"
.
format
(
self
.
_base_cmd
,
fs_path
,
local_path
)
@
_handle_errors
()
def
_try_download
(
self
,
fs_path
,
local_path
):
cmd
=
"get {} {}"
.
format
(
fs_path
,
local_path
)
ret
=
0
try
:
ret
,
lines
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
except
Exception
as
e
:
local_fs
=
LocalFS
()
local_fs
.
delete
(
local_path
)
raise
e
@
_handle_errors
@
_handle_errors
()
def
mkdirs
(
self
,
fs_path
):
if
self
.
is_exist
(
fs_path
):
return
cmd
=
"{} -mkdir {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
out_hdfs
=
False
cmd
=
"mkdir {} "
.
format
(
fs_path
)
ret
,
out
=
self
.
_run_cmd
(
cmd
,
redirect_stderr
=
True
)
if
ret
!=
0
:
for
l
in
out
:
if
"No such file or directory"
in
l
:
out_hdfs
=
True
break
if
not
out_hdfs
:
raise
ExecuteError
(
cmd
)
if
out_hdfs
and
not
self
.
is_exist
(
fs_path
):
cmd
=
"mkdir -p {}"
.
format
(
fs_path
)
ret
,
lines
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
def
mv
(
self
,
fs_src_path
,
fs_dst_path
,
overwrite
=
False
,
test_exists
=
True
):
if
overwrite
and
self
.
is_exist
(
fs_dst_path
):
self
.
delete
(
fs_dst_path
)
@
_handle_errors
def
mv
(
self
,
fs_src_path
,
fs_dst_path
,
test_exists
=
True
):
if
test_exists
:
if
not
self
.
is_exist
(
fs_src_path
):
raise
FSFileNotExistsError
raise
FSFileNotExistsError
(
"{} is not exists"
.
format
(
fs_src_path
))
if
self
.
is_exist
(
fs_dst_path
):
raise
FSFileExistsError
raise
FSFileExistsError
(
"{} exists already"
.
format
(
fs_src_path
,
fs_dst_path
,
fs_dst_path
))
cmd
=
"{} -mv {} {}"
.
format
(
self
.
_base_cmd
,
fs_src_path
,
fs_dst_path
)
return
self
.
_try_mv
(
fs_src_path
,
fs_dst_path
)
@
_handle_errors
()
def
_try_mv
(
self
,
fs_src_path
,
fs_dst_path
):
cmd
=
"mv {} {}"
.
format
(
fs_src_path
,
fs_dst_path
)
ret
=
0
try
:
ret
,
_
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
except
Exception
as
e
:
if
not
self
.
is_exist
(
fs_src_path
)
and
\
self
.
is_exist
(
fs_dst_path
):
return
raise
e
@
_handle_errors
def
_rmr
(
self
,
fs_path
):
cmd
=
"
{} -rmr {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
cmd
=
"
rmr {}"
.
format
(
fs_path
)
ret
,
_
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
@
_handle_errors
def
_rm
(
self
,
fs_path
):
cmd
=
"
{} -rm {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
cmd
=
"
rm {}"
.
format
(
fs_path
)
ret
,
_
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
raise
ExecuteError
(
cmd
)
@
_handle_errors
()
def
delete
(
self
,
fs_path
):
if
not
self
.
is_exist
(
fs_path
):
return
is_dir
=
self
.
is_dir
(
fs_path
)
is_dir
=
self
.
_
is_dir
(
fs_path
)
if
is_dir
:
return
self
.
_rmr
(
fs_path
)
return
self
.
_rm
(
fs_path
)
def
touch
(
self
,
fs_path
,
exist_ok
=
True
):
if
self
.
is_exist
(
fs_path
):
if
exist_ok
:
return
raise
FSFileExistsError
return
self
.
_touchz
(
fs_path
)
@
_handle_errors
()
def
_touchz
(
self
,
fs_path
):
cmd
=
"touchz {}"
.
format
(
fs_path
)
ret
,
_
=
self
.
_run_cmd
(
cmd
)
if
ret
!=
0
:
raise
ExecuteError
def
need_upload_download
(
self
):
return
True
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
0067a2e4
...
...
@@ -86,6 +86,10 @@ if(WIN32)
LIST
(
REMOVE_ITEM TEST_OPS test_ref_by_trainer_id_op
)
endif
()
LIST
(
REMOVE_ITEM TEST_OPS test_auto_checkpoint
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_checkpoint2
)
LIST
(
REMOVE_ITEM TEST_OPS test_checkpoint_saver
)
if
(
APPLE OR WIN32
)
LIST
(
REMOVE_ITEM TEST_OPS test_hdfs
)
LIST
(
REMOVE_ITEM TEST_OPS test_fs_interface
)
...
...
@@ -190,10 +194,11 @@ function(bash_test_modules TARGET_NAME)
endif
()
set
(
options SERIAL
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs
MODULES
DEPS ENVS LABELS
)
set
(
oneValueArgs
TIMEOUT START_BASH
)
set
(
multiValueArgs DEPS ENVS LABELS
)
cmake_parse_arguments
(
bash_test_modules
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
timeout 350
)
if
(
${
bash_test_modules_TIMEOUT
}
)
set
(
timeout
${
bash_test_modules_TIMEOUT
}
)
...
...
@@ -204,13 +209,13 @@ function(bash_test_modules TARGET_NAME)
COMMAND
${
CMAKE_COMMAND
}
-E env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
TEST_TARGET_NAME=
${
TARGET_NAME
}
TEST_TIMEOUT=
${
timeout
}
${
bash_test_modules_ENVS
}
WITH_COVERAGE=ON COVERAGE_FILE=
${
PADDLE_BINARY_DIR
}
/python-coverage.data
bash
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
bash_test_modules_
MODULES
}
bash
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
bash_test_modules_
START_BASH
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
else
()
add_test
(
NAME
${
TARGET_NAME
}
COMMAND
${
CMAKE_COMMAND
}
-E env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
TEST_TARGET_NAME=
${
TARGET_NAME
}
TEST_TIMEOUT=
${
timeout
}
${
bash_test_modules_ENVS
}
bash
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
bash_test_modules_
MODULES
}
bash
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
bash_test_modules_
START_BASH
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
endif
()
...
...
@@ -397,15 +402,16 @@ if(WITH_DISTRIBUTE)
if
(
NOT APPLE
)
if
(
WITH_GPU
)
# NOTE. test_launch only work in gpu collective mode
bash_test_modules
(
test_launch
MODULES
test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_launch
START_BASH
test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
endif
()
bash_test_modules
(
test_launch_ps MODULES test_launch_ps.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch MODULES test_fleet_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_launch_ps START_BASH test_launch_ps.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch START_BASH test_fleet_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
set
(
dist_ut_port 20001
)
foreach
(
TEST_OP
${
DIST_TEST_OPS
}
)
bash_test_modules
(
${
TEST_OP
}
MODULES
dist_test.sh SERIAL LABELS
"RUN_TYPE=EXCLUSIVE"
ENVS
"PADDLE_DIST_UT_PORT=
${
dist_ut_port
}
"
)
bash_test_modules
(
${
TEST_OP
}
START_BASH
dist_test.sh SERIAL LABELS
"RUN_TYPE=EXCLUSIVE"
ENVS
"PADDLE_DIST_UT_PORT=
${
dist_ut_port
}
"
)
MATH
(
EXPR dist_ut_port
"
${
dist_ut_port
}
+50"
)
endforeach
(
TEST_OP
)
endif
(
NOT APPLE
)
...
...
@@ -441,6 +447,12 @@ if(NOT WIN32)
set_tests_properties
(
test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 450
)
endif
()
if
(
NOT APPLE AND NOT WIN32
)
bash_test_modules
(
test_auto_checkpoint START_BASH dist_test.sh TIMEOUT 600
)
bash_test_modules
(
test_auto_checkpoint2 START_BASH dist_test.sh TIMEOUT 600
)
bash_test_modules
(
test_checkpoint_saver START_BASH dist_test.sh TIMEOUT 600
)
endif
()
add_subdirectory
(
sequence
)
add_subdirectory
(
dygraph_to_static
)
...
...
python/paddle/fluid/tests/unittests/auto_checkpoint_utils.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
import
os
import
sys
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
import
paddle.fluid.incubate.checkpoint.auto_checkpoint
as
acp
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
PaddleModel
from
paddle.fluid.framework
import
program_guard
from
paddle.fluid
import
unique_name
import
numpy
as
np
from
paddle.io
import
Dataset
,
BatchSampler
,
DataLoader
BATCH_NUM
=
20
BATCH_SIZE
=
16
#IMAGE_SIZE = 128
CLASS_NUM
=
10
USE_GPU
=
False
# whether use GPU to run model
places
=
fluid
.
cuda_places
()
if
USE_GPU
else
fluid
.
cpu_places
()
logger
=
None
def
get_logger
():
global
logger
logger
=
acp
.
_get_logger
(
20
)
return
logger
def
get_random_images_and_labels
(
image_shape
,
label_shape
):
image
=
np
.
random
.
random
(
size
=
image_shape
).
astype
(
'float32'
)
label
=
np
.
random
.
random
(
size
=
label_shape
).
astype
(
'int64'
)
return
image
,
label
def
sample_list_generator_creator
():
def
__reader__
():
for
_
in
range
(
BATCH_NUM
):
sample_list
=
[]
for
_
in
range
(
BATCH_SIZE
):
image
,
label
=
get_random_images_and_labels
([
16
,
16
],
[
1
])
sample_list
.
append
([
image
,
label
])
yield
sample_list
return
__reader__
class
AutoCheckpointBase
(
unittest
.
TestCase
):
def
_init_env
(
self
,
exe
,
main_prog
,
startup_prog
,
minimize
=
True
,
iterable
=
True
):
def
simple_net
():
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
-
1
,
16
,
16
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_tmp
=
fluid
.
layers
.
fc
(
image
,
size
=
CLASS_NUM
)
cross_entropy
=
fluid
.
layers
.
softmax_with_cross_entropy
(
fc_tmp
,
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cross_entropy
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
if
minimize
:
sgd
.
minimize
(
loss
)
return
sgd
,
loss
,
image
,
label
with
program_guard
(
main_prog
,
startup_prog
):
sgd
,
loss
,
image
,
label
=
simple_net
()
if
minimize
:
compiled
=
fluid
.
CompiledProgram
(
main_prog
).
with_data_parallel
(
loss_name
=
loss
.
name
)
else
:
compiled
=
None
loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
iterable
)
loader
.
set_sample_list_generator
(
sample_list_generator_creator
(),
places
[
0
])
if
minimize
:
exe
.
run
(
startup_prog
)
return
compiled
,
loader
,
sgd
,
loss
,
image
,
label
def
_generate
(
self
):
main_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
exe
=
fluid
.
Executor
(
places
[
0
])
return
exe
,
main_prog
,
startup_prog
def
_reset_generator
(
self
):
unique_name
.
generator
=
fluid
.
unique_name
.
UniqueNameGenerator
()
acp
.
generator
=
fluid
.
unique_name
.
UniqueNameGenerator
()
acp
.
g_acp_type
=
None
acp
.
g_checker
=
acp
.
AutoCheckpointChecker
()
acp
.
g_program_attr
=
{}
def
_clear_envs
(
self
):
os
.
environ
.
pop
(
"PADDLE_RUNNING_ENV"
,
None
)
def
_readd_envs
(
self
):
os
.
environ
[
"PADDLE_RUNNING_ENV"
]
=
"PADDLE_EDL_AUTO_CHECKPOINT"
python/paddle/fluid/tests/unittests/test_auto_checkpoint.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
import
os
import
sys
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
import
paddle.fluid.incubate.checkpoint.auto_checkpoint
as
acp
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
PaddleModel
from
paddle.fluid.framework
import
program_guard
from
paddle.fluid
import
unique_name
import
numpy
as
np
from
paddle.io
import
Dataset
,
BatchSampler
,
DataLoader
from
paddle.fluid.tests.unittests.auto_checkpoint_utils
import
AutoCheckpointBase
,
get_logger
logger
=
get_logger
()
class
AutoCheckPointACLBase
(
AutoCheckpointBase
):
def
setUp
(
self
):
get_logger
()
logger
.
info
(
"enter tests"
)
self
.
_old_environ
=
dict
(
os
.
environ
)
proc_env
=
{
"PADDLE_RUNNING_ENV"
:
"PADDLE_EDL_AUTO_CHECKPOINT"
,
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_RUNNING_PLATFORM"
:
"PADDLE_CLOUD"
,
"PADDLE_JOB_ID"
:
"test_job_auto"
,
"PADDLE_EDL_HDFS_HOME"
:
"/usr/local/hadoop-2.7.7"
,
"PADDLE_EDL_HDFS_NAME"
:
""
,
"PADDLE_EDL_HDFS_UGI"
:
""
,
"PADDLE_EDL_HDFS_CHECKPOINT_PATH"
:
"auto_checkpoint"
,
"PADDLE_EDL_ONLY_FOR_CE_TEST"
:
"1"
,
"PADDLE_EDL_FS_CACHE"
:
".auto_checkpoint_test"
,
"PADDLE_EDL_SAVE_CHECKPOINT_INTER"
:
"0"
}
os
.
environ
.
update
(
proc_env
)
def
tearDown
(
self
):
os
.
environ
.
clear
()
os
.
environ
.
update
(
self
.
_old_environ
)
def
_run_normal
(
self
):
exe
,
main_prog
,
startup_prog
=
self
.
_generate
()
save_dir
=
"./run_save_model"
fs
=
LocalFS
()
fs
.
delete
(
save_dir
)
logger
.
info
(
"begin _run_normal"
)
compiled
,
data_loader
,
optimizer
,
loss
,
image
,
label
=
self
.
_init_env
(
exe
,
main_prog
,
startup_prog
)
for
i
in
range
(
3
):
self
.
assertEqual
(
acp
.
_get_train_epoch_range
(),
None
)
self
.
assertEqual
(
acp
.
g_acp_type
,
None
)
for
data
in
data_loader
():
self
.
assertEqual
(
acp
.
g_acp_type
,
None
)
self
.
assertEqual
(
acp
.
_get_train_epoch_range
(),
None
)
fetch
=
exe
.
run
(
compiled
,
feed
=
data
,
fetch_list
=
[
loss
])
self
.
assertEqual
(
acp
.
g_acp_type
,
None
)
self
.
assertEqual
(
acp
.
_get_train_epoch_range
(),
None
)
m1
=
PaddleModel
(
exe
,
compiled
)
m1
.
serialize
(
save_dir
)
m2
=
PaddleModel
(
exe
,
compiled
)
m2
.
deserialize
(
save_dir
)
logger
.
info
(
"end _run_normal"
)
fs
.
delete
(
save_dir
)
def
_not_use_train
(
self
):
logger
.
info
(
"begin _not_use_train"
)
exe
,
main_prog
,
startup_prog
=
self
.
_generate
()
compiled
,
data_loader
,
optimizer
,
loss
,
image
,
label
=
\
self
.
_init_env
(
exe
,
main_prog
,
startup_prog
)
epochs
=
[]
for
i
in
acp
.
train_epoch_range
(
3
,
0
):
epochs
.
append
(
i
)
for
data
in
data_loader
():
fetch
=
exe
.
run
(
compiled
,
feed
=
data
,
fetch_list
=
[
loss
])
self
.
assertEqual
(
epochs
,
[
0
,
1
,
2
])
logger
.
info
(
"end _not_use_train"
)
def
_run_save_0
(
self
,
break_epoch_no
=
None
):
logger
.
info
(
"begin _run_save_0"
)
fs
=
LocalFS
()
save_dir
=
"./run_save_0"
fs
.
delete
(
save_dir
)
exe
,
main_prog
,
startup_prog
=
self
.
_generate
()
compiled
,
data_loader
,
optimizer
,
loss
,
image
,
label
=
\
self
.
_init_env
(
exe
,
main_prog
,
startup_prog
)
o
=
None
i
=
0
name
=
None
for
i
in
acp
.
train_epoch_range
(
3
,
0
):
o
=
acp
.
_get_train_epoch_range
()
name
=
o
.
name
for
data
in
data_loader
():
fetch
=
exe
.
run
(
compiled
,
feed
=
data
,
fetch_list
=
[
loss
])
self
.
assertEqual
(
len
(
o
.
_exe_status
),
1
)
if
break_epoch_no
is
not
None
:
if
i
==
break_epoch_no
:
break
o
=
acp
.
_get_train_epoch_range
()
assert
o
==
None
,
"now train epoch must not exits now"
if
break_epoch_no
is
None
:
self
.
assertEqual
(
i
,
2
)
else
:
self
.
assertEqual
(
i
,
break_epoch_no
)
fs
.
delete
(
save_dir
)
logger
.
info
(
"end _run_save_0"
)
def
_run_load_0
(
self
,
break_epoch_no
=
None
):
logger
.
info
(
"begin _run_load_0"
)
exe
,
main_prog
,
startup_prog
=
self
.
_generate
()
fs
=
LocalFS
()
save_dir
=
"./run_load_0"
fs
.
delete
(
save_dir
)
compiled
,
data_loader
,
optimizer
,
loss
,
image
,
label
=
self
.
_init_env
(
exe
,
main_prog
,
startup_prog
)
o
=
None
i
=
0
check
=
False
epochs
=
[]
for
i
in
acp
.
train_epoch_range
(
3
,
0
):
epochs
.
append
(
i
)
for
data
in
data_loader
():
fetch
=
exe
.
run
(
compiled
,
feed
=
data
,
fetch_list
=
[
loss
])
o
=
acp
.
_get_train_epoch_range
()
self
.
assertTrue
(
o
==
None
,
"now train epoch must not exits now"
)
self
.
assertEqual
(
i
,
2
)
if
break_epoch_no
is
not
None
:
if
break_epoch_no
==
0
:
self
.
assertEqual
(
epochs
,
[
0
,
1
,
2
])
elif
break_epoch_no
==
1
:
self
.
assertEqual
(
epochs
,
[
1
,
2
])
elif
break_epoch_no
==
2
:
self
.
assertEqual
(
epochs
,
[
2
])
else
:
self
.
assertEqual
(
epochs
,
[
2
])
fs
.
delete
(
save_dir
)
logger
.
info
(
"begin _run_load_0"
)
class
AutoCheckpointTest
(
AutoCheckPointACLBase
):
def
setUp
(
self
):
get_logger
()
logger
.
info
(
"enter tests"
)
self
.
_old_environ
=
dict
(
os
.
environ
)
proc_env
=
{
"PADDLE_RUNNING_ENV"
:
"PADDLE_EDL_AUTO_CHECKPOINT"
,
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_RUNNING_PLATFORM"
:
"PADDLE_CLOUD"
,
"PADDLE_JOB_ID"
:
"test_job_auto_1"
,
"PADDLE_EDL_HDFS_HOME"
:
"/usr/local/hadoop-2.7.7"
,
"PADDLE_EDL_HDFS_NAME"
:
""
,
"PADDLE_EDL_HDFS_UGI"
:
""
,
"PADDLE_EDL_HDFS_CHECKPOINT_PATH"
:
"auto_checkpoint_1"
,
"PADDLE_EDL_ONLY_FOR_CE_TEST"
:
"1"
,
"PADDLE_EDL_FS_CACHE"
:
".auto_checkpoint_test_1"
,
"PADDLE_EDL_SAVE_CHECKPOINT_INTER"
:
"0"
}
os
.
environ
.
update
(
proc_env
)
def
test_normal
(
self
):
logger
.
info
(
"begin test_normal"
)
checker
=
acp
.
_get_checker
()
fs
=
HDFSClient
(
checker
.
hdfs_home
,
None
)
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
self
.
_clear_envs
()
self
.
_reset_generator
()
self
.
_run_normal
()
self
.
_readd_envs
()
logger
.
info
(
"end test_normal"
)
def
test_basic
(
self
):
logger
.
info
(
"begin test_basic"
)
checker
=
acp
.
_get_checker
()
self
.
assertEqual
(
checker
.
run_env
,
"PADDLE_EDL_AUTO_CHECKPOINT"
)
self
.
assertEqual
(
checker
.
platform
,
"PADDLE_CLOUD"
)
self
.
assertEqual
(
checker
.
save_checkpoint_inter
,
0
)
print
(
checker
)
fs
=
HDFSClient
(
checker
.
hdfs_home
,
None
)
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
self
.
_reset_generator
()
self
.
_run_save_0
()
self
.
_reset_generator
()
self
.
_run_load_0
()
logger
.
info
(
"end test_basic"
)
def
test_not_use
(
self
):
logger
.
info
(
"begin test_not_use"
)
self
.
_clear_envs
()
self
.
_reset_generator
()
self
.
_not_use_train
()
self
.
_readd_envs
()
logger
.
info
(
"end test_not_use"
)
def
test_multiple
(
self
):
checker
=
acp
.
_get_checker
()
fs
=
HDFSClient
(
checker
.
hdfs_home
,
None
)
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
self
.
_reset_generator
()
logger
.
info
(
"begin test_multiple"
)
fs
=
LocalFS
()
save_dir
=
"./run_save_0"
fs
.
delete
(
save_dir
)
exe
,
main_prog1
,
startup_prog1
=
self
.
_generate
()
_
,
main_prog2
,
startup_prog2
=
self
.
_generate
()
compiled1
,
data_loader1
,
optimizer1
,
loss1
,
image1
,
label1
=
\
self
.
_init_env
(
exe
,
main_prog1
,
startup_prog1
)
compiled2
,
data_loader2
,
optimizer2
,
loss2
,
image2
,
label2
=
\
self
.
_init_env
(
exe
,
main_prog2
,
startup_prog2
)
o
=
None
epochs
=
[]
for
i
in
acp
.
train_epoch_range
(
3
,
0
):
for
data
in
data_loader1
():
fetch
=
exe
.
run
(
compiled1
,
feed
=
data
,
fetch_list
=
[
loss1
])
for
data
in
data_loader2
():
fetch
=
exe
.
run
(
compiled2
,
feed
=
data
,
fetch_list
=
[
loss2
])
o
=
acp
.
_get_train_epoch_range
()
self
.
assertEqual
(
len
(
o
.
_exe_status
),
2
)
print
(
o
.
_exe_status
)
epochs
.
append
(
i
)
o
=
acp
.
_get_train_epoch_range
()
self
.
assertTrue
(
o
==
None
,
"now train epoch must not exits now"
)
self
.
assertEqual
(
i
,
2
)
self
.
assertEqual
(
epochs
,
[
0
,
1
,
2
])
fs
.
delete
(
save_dir
)
logger
.
info
(
"end test_multiple"
)
def
test_distributed_basic
(
self
):
checker
=
acp
.
_get_checker
()
fs
=
HDFSClient
(
checker
.
hdfs_home
,
None
)
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
self
.
_reset_generator
()
logger
.
info
(
"begin test_distributed_basic"
)
fs
=
LocalFS
()
save_dir
=
"./run_save_0"
fs
.
delete
(
save_dir
)
#basic
exe
,
main_prog
,
startup_prog
=
self
.
_generate
()
compiled
,
data_loader
,
optimizer
,
loss
,
image
,
label
=
\
self
.
_init_env
(
exe
,
main_prog
,
startup_prog
,
minimize
=
False
)
#fleet
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:6070"
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
dist_optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
dist_optimizer
.
minimize
(
loss
)
exe
.
run
(
startup_prog
)
o
=
None
i
=
0
name
=
None
for
i
in
acp
.
train_epoch_range
(
3
,
0
):
o
=
acp
.
_get_train_epoch_range
()
name
=
o
.
name
logger
.
info
(
"_run_save_0 name:{} epoch_no:{}"
.
format
(
o
.
name
,
i
))
for
data
in
data_loader
():
fetch
=
exe
.
run
(
fleet
.
main_program
,
feed
=
data
,
fetch_list
=
[
loss
])
self
.
assertEqual
(
len
(
o
.
_exe_status
),
1
)
o
=
acp
.
_get_train_epoch_range
()
assert
o
==
None
,
"now train epoch must not exits now"
self
.
assertEqual
(
i
,
2
)
fs
.
delete
(
save_dir
)
logger
.
info
(
"end test_distributed_basic"
)
def
test_checker
(
self
):
os
.
environ
.
pop
(
"PADDLE_JOB_ID"
,
None
)
try
:
checker
=
AutoCheckpointChecker
()
self
.
assertFalse
(
True
)
except
Exception
as
e
:
pass
os
.
environ
[
"PADDLE_JOB_ID"
]
=
"test_job_auto_1"
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_auto_checkpoint2.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
import
os
import
sys
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
import
paddle.fluid.incubate.checkpoint.auto_checkpoint
as
acp
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
PaddleModel
from
paddle.fluid.framework
import
program_guard
from
paddle.fluid
import
unique_name
import
numpy
as
np
from
paddle.io
import
Dataset
,
BatchSampler
,
DataLoader
from
paddle.fluid.tests.unittests.auto_checkpoint_utils
import
AutoCheckpointBase
,
get_logger
from
paddle.fluid.tests.unittests.test_auto_checkpoint
import
AutoCheckPointACLBase
logger
=
get_logger
()
class
AutoCheckpointTest2
(
AutoCheckPointACLBase
):
def
setUp
(
self
):
get_logger
()
logger
.
info
(
"enter tests"
)
self
.
_old_environ
=
dict
(
os
.
environ
)
proc_env
=
{
"PADDLE_RUNNING_ENV"
:
"PADDLE_EDL_AUTO_CHECKPOINT"
,
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_RUNNING_PLATFORM"
:
"PADDLE_CLOUD"
,
"PADDLE_JOB_ID"
:
"test_job_auto_2"
,
"PADDLE_EDL_HDFS_HOME"
:
"/usr/local/hadoop-2.7.7"
,
"PADDLE_EDL_HDFS_NAME"
:
""
,
"PADDLE_EDL_HDFS_UGI"
:
""
,
"PADDLE_EDL_HDFS_CHECKPOINT_PATH"
:
"auto_checkpoint_2"
,
"PADDLE_EDL_ONLY_FOR_CE_TEST"
:
"1"
,
"PADDLE_EDL_FS_CACHE"
:
".auto_checkpoint_test_2"
,
"PADDLE_EDL_SAVE_CHECKPOINT_INTER"
:
"0"
}
os
.
environ
.
update
(
proc_env
)
def
test_corner_epoch_no
(
self
):
logger
.
info
(
"begin test_corener_epoch_no"
)
checker
=
acp
.
_get_checker
()
fs
=
HDFSClient
(
checker
.
hdfs_home
,
None
)
for
i
in
range
(
3
):
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
self
.
_reset_generator
()
self
.
_run_save_0
(
break_epoch_no
=
i
)
self
.
_reset_generator
()
self
.
_run_load_0
(
break_epoch_no
=
i
)
fs
.
delete
(
checker
.
hdfs_checkpoint_path
)
logger
.
info
(
"end test_corener_epoch_no"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_checkpoint_saver.py
0 → 100644
浏览文件 @
0067a2e4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
from
paddle.fluid.incubate.checkpoint.auto_checkpoint
import
ExeTrainStatus
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
CheckpointSaver
import
os
import
sys
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
CheckpointSaver
class
CheckpointerSaverTest
(
unittest
.
TestCase
):
def
test
(
self
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7"
,
None
)
dir_path
=
"./checkpointsaver_test"
fs
.
delete
(
dir_path
)
s
=
CheckpointSaver
(
fs
)
fs
.
mkdirs
(
"{}/exe.exe"
.
format
(
dir_path
))
fs
.
mkdirs
(
"{}/exe.1"
.
format
(
dir_path
))
fs
.
mkdirs
(
"{}/exe"
.
format
(
dir_path
))
a
=
s
.
get_checkpoint_no
(
dir_path
)
self
.
assertEqual
(
len
(
a
),
0
)
fs
.
mkdirs
(
"{}/__paddle_checkpoint__.0"
.
format
(
dir_path
))
fs
.
mkdirs
(
"{}/__paddle_checkpoint__.exe"
.
format
(
dir_path
))
a
=
s
.
get_checkpoint_no
(
dir_path
)
self
.
assertEqual
(
len
(
a
),
1
)
s
.
clean_redundant_checkpoints
(
dir_path
)
s
.
clean_redundant_checkpoints
(
dir_path
)
fs
.
delete
(
dir_path
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_desc_clone.py
浏览文件 @
0067a2e4
...
...
@@ -170,7 +170,8 @@ def program_equal(a, b):
k
))
return
False
assert
(
len
(
a
.
blocks
)
==
len
(
b
.
blocks
))
elif
k
==
'_auto_checkpoint_name'
:
continue
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In program_equal not equal:{0}
\n
"
.
format
(
k
))
...
...
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
浏览文件 @
0067a2e4
...
...
@@ -15,12 +15,15 @@
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
,
TrainStatus
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
from
paddle.fluid.incubate.checkpoint.auto_checkpoint
import
ExeTrainStatus
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
CheckpointSaver
import
os
import
sys
from
paddle.fluid.incubate.fleet.utils.fs
import
LocalFS
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
from
paddle.fluid.incubate.checkpoint.checkpoint_saver
import
CheckpointSaver
class
FleetTest
(
unittest
.
TestCase
):
...
...
@@ -49,24 +52,35 @@ class FleetTest(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
status
=
TrainStatus
(
2
)
fleet
.
save_checkpoint
(
exe
,
dir_path
,
train_status
=
status
,
fs
=
fs
)
n1
=
fleet
.
_get_last_checkpoint_no
(
dir_path
,
fs
=
fs
)
status
=
ExeTrainStatus
()
status
.
epoch_no
=
2
_
,
n1
=
fleet
.
save_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
train_status
=
status
,
fs
=
fs
)
status2
=
fleet
.
load_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
fs
=
fs
)
status2
=
ExeTrainStatus
()
fleet
.
load_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
fs
=
fs
,
train_status
=
status2
)
self
.
assertEqual
(
status2
,
status
)
fleet
.
save_checkpoint
(
exe
,
dir_path
,
train_status
=
status
,
fs
=
fs
)
n2
=
fleet
.
_get_last_checkpoint_no
(
dir_path
,
fs
=
fs
)
_
,
n2
=
fleet
.
save_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
train_status
=
status
,
fs
=
fs
,
remain_all_checkpoint
=
False
)
self
.
assertEqual
(
n2
,
n1
+
1
)
fleet
.
clean_redundant_checkpoints
(
dir_path
,
fs
=
fs
)
c
=
CheckpointSaver
(
fs
)
cp_nos
=
c
.
get_checkpoint_no
(
dir_path
)
assert
len
(
cp_nos
)
==
1
# cleanup all others
# unnormal
# test remain_all_checkpoint
fleet
.
save_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
train_status
=
status
,
fs
=
fs
,
remain_all_checkpoint
=
False
)
...
...
@@ -79,6 +93,7 @@ class FleetTest(unittest.TestCase):
fleet
.
save_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
train_status
=
status
,
fs
=
fs
,
cache_path
=
cache_path
)
...
...
@@ -88,8 +103,13 @@ class FleetTest(unittest.TestCase):
# can't load under a file
try
:
status2
=
fleet
.
load_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
fs
=
fs
,
cache_path
=
cache_path
)
fleet
.
load_checkpoint
(
exe
,
dir_path
,
trainer_id
=
0
,
train_status
=
status2
,
fs
=
fs
,
cache_path
=
cache_path
)
self
.
assertFalse
(
True
)
except
:
pass
...
...
python/paddle/fluid/tests/unittests/test_fs_interface.py
浏览文件 @
0067a2e4
...
...
@@ -15,7 +15,7 @@
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
,
TrainStatus
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
import
os
import
sys
import
inspect
...
...
@@ -38,6 +38,8 @@ class FSTest(unittest.TestCase):
func
(
a
)
elif
len
(
args
)
==
3
:
func
(
a
,
a
)
elif
len
(
args
)
==
5
:
func
(
a
,
a
,
a
,
a
)
print
(
"args:"
,
args
,
len
(
args
),
"func:"
,
func
)
self
.
assertFalse
(
True
)
except
NotImplementedError
as
e
:
...
...
python/paddle/fluid/tests/unittests/test_hdfs.py
浏览文件 @
0067a2e4
...
...
@@ -15,7 +15,7 @@
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
,
TrainStatus
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
import
os
import
sys
...
...
@@ -57,6 +57,12 @@ class FSTest(unittest.TestCase):
fs
.
delete
(
dir_path
)
self
.
assertTrue
(
not
fs
.
is_exist
(
dir_path
))
fs
.
mkdirs
(
dir_path
)
fs
.
mkdirs
(
new_dir_path
)
fs
.
mv
(
dir_path
,
new_dir_path
,
overwrite
=
True
)
self
.
assertTrue
(
not
fs
.
is_exist
(
dir_path
))
self
.
assertTrue
(
fs
.
is_exist
(
new_dir_path
))
def
_test_touch_file
(
self
,
fs
):
file_path
=
os
.
path
.
abspath
(
"./test_file"
)
...
...
@@ -104,6 +110,35 @@ class FSTest(unittest.TestCase):
fs
.
delete
(
dst_file
)
fs
.
delete
(
src_file
)
def
_test_try_download
(
self
,
fs
):
src_file
=
os
.
path
.
abspath
(
"./test_try_download.src"
)
dst_file
=
os
.
path
.
abspath
(
"./test_try_download.dst"
)
fs
.
delete
(
dst_file
)
fs
.
delete
(
src_file
)
try
:
fs
.
_try_download
(
src_file
,
dst_file
)
self
.
assertFalse
(
True
)
except
Exception
as
e
:
pass
fs
.
delete
(
dst_file
)
fs
.
delete
(
src_file
)
def
_test_try_upload
(
self
,
fs
):
src_file
=
os
.
path
.
abspath
(
"./test_try_upload.src"
)
dst_file
=
os
.
path
.
abspath
(
"./test_try_uolpad.dst"
)
try
:
fs
.
_try_upload
(
src_file
,
dst_file
)
self
.
assertFalse
(
True
)
except
Exception
as
e
:
pass
fs
.
delete
(
dst_file
)
fs
.
delete
(
src_file
)
def
_test_download
(
self
,
fs
):
src_file
=
os
.
path
.
abspath
(
"./test_download.src"
)
dst_file
=
os
.
path
.
abspath
(
"./test_download.dst"
)
...
...
@@ -138,8 +173,27 @@ class FSTest(unittest.TestCase):
fs
.
mkdirs
(
dir_name
)
fs
.
mkdirs
(
dir_name
)
def
_test_rm
(
self
,
fs
):
dir_name
=
"./test_rm_no_exist.flag"
fs
.
delete
(
dir_name
)
try
:
fs
.
_rmr
(
dir_name
)
self
.
assertFalse
(
True
)
except
Exception
as
e
:
pass
try
:
fs
.
_rm
(
dir_name
)
self
.
assertFalse
(
True
)
except
Exception
as
e
:
pass
def
test_exists
(
self
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
)
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
,
sleep_inter
=
100
)
self
.
assertFalse
(
fs
.
is_exist
(
os
.
path
.
abspath
(
"./xxxx"
)))
self
.
assertFalse
(
fs
.
is_dir
(
os
.
path
.
abspath
(
"./xxxx"
)))
self
.
assertTrue
(
fs
.
is_dir
(
os
.
path
.
abspath
(
"./xxx/.."
)))
...
...
@@ -149,27 +203,39 @@ class FSTest(unittest.TestCase):
dirs
,
files
=
fs
.
ls_dir
(
os
.
path
.
abspath
(
"./xxx/.."
))
def
test_hdfs
(
self
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
)
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
,
sleep_inter
=
100
)
self
.
_test_rm
(
fs
)
self
.
_test_touch
(
fs
)
self
.
_test_dirs
(
fs
)
self
.
_test_upload
(
fs
)
self
.
_test_download
(
fs
)
self
.
_test_mkdirs
(
fs
)
self
.
_test_list_dir
(
fs
)
self
.
_test_try_upload
(
fs
)
self
.
_test_try_download
(
fs
)
def
test_local
(
self
):
fs
=
LocalFS
()
self
.
_test_rm
(
fs
)
self
.
_test_touch
(
fs
)
self
.
_test_dirs
(
fs
)
self
.
_test_touch_file
(
fs
)
self
.
_test_mkdirs
(
fs
)
self
.
_test_list_dir
(
fs
)
self
.
_test_try_upload
(
fs
)
self
.
_test_try_download
(
fs
)
def
test_timeout
(
self
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
6
*
1000
,
sleep_inter
=
20
00
)
sleep_inter
=
1
00
)
src
=
"hdfs_test_timeout"
dst
=
"new_hdfs_test_timeout"
fs
.
delete
(
dst
)
...
...
@@ -190,7 +256,11 @@ class FSTest(unittest.TestCase):
print
(
"second mv ret:{} output:{}"
.
format
(
ret
,
output
))
def
test_is_dir
(
self
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
)
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
,
sleep_inter
=
100
)
self
.
assertFalse
(
fs
.
is_dir
(
"./test_hdfs.py"
))
s
=
"""
java.io.IOException: Input/output error
...
...
@@ -212,12 +282,38 @@ java.io.IOException: Input/output error
def
test_config
(
self
):
config
=
{
"fs.default.name"
:
"hdfs://xxx"
,
"hadoop.job.ugi"
:
"ugi"
}
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
config
,
time_out
=
15
*
1000
)
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
config
,
time_out
=
15
*
1000
,
sleep_inter
=
100
)
def
_test_list_dir
(
self
,
fs
):
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
)
fs
=
HDFSClient
(
"/usr/local/hadoop-2.7.7/"
,
None
,
time_out
=
15
*
1000
,
sleep_inter
=
100
)
fs
.
ls_dir
(
"test_not_exists"
)
def
_test_touch
(
self
,
fs
):
path
=
"./touch.flag"
fs
.
touch
(
path
,
exist_ok
=
True
)
try
:
fs
.
touch
(
"./touch.flag"
,
exist_ok
=
False
)
self
.
assertFalse
(
0
,
"can't reach here"
)
except
FSFileExistsError
as
e
:
pass
try
:
fs
.
_touchz
(
"./touch.flag"
)
self
.
assertFalse
(
True
,
"can't reach here"
)
except
Exception
as
e
:
pass
self
.
assertFalse
(
fs
.
is_dir
(
path
))
fs
.
delete
(
path
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/setup.py.in
浏览文件 @
0067a2e4
...
...
@@ -178,6 +178,7 @@ packages=['paddle',
'paddle.fluid.incubate',
'paddle.fluid.incubate.data_generator',
'paddle.fluid.incubate.fleet',
'paddle.fluid.incubate.checkpoint',
'paddle.fluid.incubate.fleet.base',
'paddle.fluid.incubate.fleet.parameter_server',
'paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录