From 001b62a4c7429cbbc9d87def62c65da4f18b52f3 Mon Sep 17 00:00:00 2001 From: superjom Date: Tue, 8 Aug 2017 17:20:30 +0800 Subject: [PATCH] finish simple rnn in python --- .../v2/framework/tests/test_recurrent_op.py | 81 ++++++++++++++++--- 1 file changed, 68 insertions(+), 13 deletions(-) diff --git a/python/paddle/v2/framework/tests/test_recurrent_op.py b/python/paddle/v2/framework/tests/test_recurrent_op.py index 5c77c477b34..bab04d7a6cf 100644 --- a/python/paddle/v2/framework/tests/test_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_recurrent_op.py @@ -2,9 +2,64 @@ import logging import paddle.v2.framework.core as core import unittest import numpy as np -import paddle.v2.framework.create_op_creation_methods as creation +from paddle.v2.framework.op import Operator -ops = creation.op_creations + +def py_sigmoid(x): + return 1. / (1 + np.exp(-x)) + + +class PySimpleRNN(object): + ''' + A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm + ''' + def __init__(self, + input_dim = 30, + batch_size = 50, + weight_dim = 15, + sent_len = 11): + self.x = np.random.normal(size=(sent_len, batch_size, input_dim)) + self.W = np.random.normal(size=(input_dim, input_dim)) + self.U = np.random.normal(size=(input_dim, input_dim)) + self.h_boot = np.random.normal(size=(batch_size, input_dim)) + + # memories + self.mems = [np.zeros(shape=(batch_size, input_dim)) for i in range(sent_len)] + + def forward(self): + xs = self.segment_inputs() + for step_id in range(self.x.shape[0]): + self.step(step_id, xs[step_id]) + return self.concat_outputs() + + def segment_inputs(self): + return [self.x[i] for i in range(self.x.shape[0])] + + def concat_outputs(self): + return np.array(self.mems) + + def step(self, step_id, x): + ''' + run a step + ''' + mem = self.mems[step_id] + if step_id > 0: + pre_mem = self.mems[step_id-1] + else: + pre_mem = self.h_boot + xW = np.matmul(x, self.W) + hU = np.matmul(mem, self.U) + + sum = xW + hU + self.mems[step_id] = py_sigmoid(sum) + +class PySimpleRNNTest(unittest.TestCase): + def setUp(self): + self.rnn = PySimpleRNN() + + def test_forward(self): + output = self.rnn.forward() + print 'output', output def create_tensor(scope, name, shape): @@ -14,7 +69,7 @@ def create_tensor(scope, name, shape): return tensor -class TestRNN(unittest.TestCase): +class TestRecurrentOp(unittest.TestCase): ''' Test RNNOp @@ -28,7 +83,7 @@ class TestRNN(unittest.TestCase): memories: - h outputs: - - h + - h ''' input_dim = 30 @@ -36,7 +91,7 @@ class TestRNN(unittest.TestCase): weight_dim = 15 sent_len = 11 - def init(self): + def forward(self): self.scope = core.Scope() @@ -46,7 +101,6 @@ class TestRNN(unittest.TestCase): ctx = core.DeviceContext.create(core.CPUPlace()) print 'infer_shape' rnn_op.infer_shape(self.scope) - rnn_op.run(self.scope, ctx) def create_global_variables(self): @@ -62,7 +116,7 @@ class TestRNN(unittest.TestCase): def create_rnn_op(self): # create RNNOp - rnnop = ops.recurrent_op( + rnnop = Operator("recurrent_op", # inputs inlinks=["x"], boot_memories=["h_boot"], @@ -81,17 +135,18 @@ class TestRNN(unittest.TestCase): var = self.scope.new_var("stepnet") stepnet = var.get_net() - x_fc_op = ops.fc(X="x@alias", W="W", Y="Wx") - h_fc_op = ops.fc(X="h@pre", W="U", Y="Uh") - sum_op = ops.add_two(X="Wx", Y="Uh", Out="sum") - sig_op = ops.sigmoid(X="sum", Y="h@alias") + x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx") + h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh") + sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum") + sig_op = Operator("sigmoid", X="sum", Y="h@alias") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: stepnet.add_op(op) stepnet.complete_add_op(True) - def test_recurrent(self): - self.init() + def test_forward(self): + print 'test recurrent op forward' + self.forward() if __name__ == '__main__': -- GitLab