optimizer.cuh.h 3.7 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <curand_kernel.h>
T
Thunderbrook 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#include <vector>
#include "optimizer_conf.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"

#ifdef PADDLE_WITH_PSLIB

namespace paddle {
namespace framework {

__device__ double cuda_double_random(unsigned long long seed) {
  // copy from MurmurHash3
  seed ^= seed >> 33;
  seed *= 0xff51afd7ed558ccd;
  seed ^= seed >> 33;
  seed *= 0xc4ceb9fe1a85ec53;
  seed ^= seed >> 33;
  return ((double)seed / 18446744073709551615.0);
}

__device__ float cuda_normal_random(unsigned long long idx) {
  static double pi = 3.1415926897932384;
  unsigned long long x = clock64() + idx;
  double x1, x2, res;
  while (1) {
    x1 = cuda_double_random(x);
    x2 = cuda_double_random(x + 33);
    res = sqrt(-2.0 * log(x1)) * cos(2.0 * pi * x2);
    if (-10 < res && res < 10) break;
    x += 207;
  }
  return res;
}

template <typename ValType, typename GradType>
class Optimizer {
 public:
  Optimizer() {}

  ~Optimizer() {}

  void initialize() {}

  __device__ void update_lr(float& w, float& g2sum, float g, float scale) {
    double add_g2sum = 0;
    double ratio = optimizer_config::learning_rate *
                   sqrt(optimizer_config::initial_g2sum /
                        (optimizer_config::initial_g2sum + g2sum));
    double scaled_grad = g / scale;

    w += scaled_grad * ratio;

    if (w < optimizer_config::min_bound) w = optimizer_config::min_bound;
    if (w > optimizer_config::max_bound) w = optimizer_config::max_bound;

    add_g2sum = scaled_grad * scaled_grad;

    g2sum += add_g2sum;
  }

  __device__ void update_mf(int n, float* w, float& g2sum, const float* g,
                            float scale) {
    double add_g2sum = 0;
    double ratio = optimizer_config::mf_learning_rate *
                   sqrt(optimizer_config::mf_initial_g2sum /
                        (optimizer_config::mf_initial_g2sum + g2sum));
    for (int i = 0; i < n; ++i) {
      double scaled_grad = g[i] / scale;

      w[i] += scaled_grad * ratio;

      if (w[i] < optimizer_config::mf_min_bound)
        w[i] = optimizer_config::mf_min_bound;
      if (w[i] > optimizer_config::mf_max_bound)
        w[i] = optimizer_config::mf_max_bound;
      add_g2sum = scaled_grad * scaled_grad;
    }

    g2sum += add_g2sum / n;
  }
  __device__ void update_value(ValType& val, const GradType& grad) {
    val.slot = grad.slot;
    ;
    val.show += grad.show;
    val.clk += grad.clk;

    update_lr(val.lr, val.lr_g2sum, grad.lr_g, 1.0);

    if (val.mf_size == 0) {
      if (optimizer_config::mf_create_thresholds <=
          optimizer_config::nonclk_coeff * (val.show - val.clk) +
              optimizer_config::clk_coeff * val.clk) {
        val.mf_size = MF_DIM + 1;
        val.mf[0] = 0;
110 111 112
        int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
        curandState state;
        curand_init(clock64(), tid_x, 0, &state);
T
Thunderbrook 已提交
113
        for (int i = 0; i < MF_DIM; ++i) {
114 115
          val.mf[i + 1] =
              (curand_uniform(&state)) * optimizer_config::mf_initial_range;
T
Thunderbrook 已提交
116 117 118 119 120 121 122 123 124 125 126
        }
      }
    } else {
      update_mf(MF_DIM, &val.mf[1], val.mf[0], grad.mf_g, 1.0);
    }
  }
};

}  // end namespace framework
}  // end namespace paddle
#endif