partitioner.py 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import paddle.fluid as fluid
from paddle.fluid import core
18 19
from paddle.fluid import core
from paddle.fluid.framework import Parameter, Program
20
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
21
from paddle.distributed.auto_parallel.dist_context import DistributedContext
22
from .dist_attribute import OperatorDistributedAttribute
23
from .utils import is_backward_op, is_forward_op, is_loss_op, is_optimize_op
J
JZ-LIANG 已提交
24
from .operators.common import BACKWARD_ONLY_DIST_OPS
25 26

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]
27 28 29
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
30 31 32 33 34 35 36


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
37
    Given a serial program which has been auto completed with shard annotation, the Partitioner
38 39 40 41 42 43 44 45
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

46
    def __init__(self, dist_context, rank_id=0):
47 48
        """
        Args:
49
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
50 51
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
52
        if not isinstance(dist_context, DistributedContext):
53
            raise TypeError(
54 55
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
56

57
        self._dist_context = dist_context
58 59 60 61
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

62 63 64
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
65
            raise TypeError(
66 67
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
68 69

        # check if shard annotated serial program valid
70
        if not self._is_valid_annotated_program(serial_main_program):
71 72 73
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

74 75
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
76 77
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
78

79 80 81 82 83 84
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
85
        dist_op_context.dst_startup_program = partitioned_startup_prog
86

87
        # partition main program
88 89
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
90

91
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
92

93 94
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
95

96 97 98 99
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
100

101 102 103
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
104
        var2shape = {}
105
        temp_varname_map = {}
106

107 108
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
109 110 111 112 113 114
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
115 116 117 118 119 120 121 122 123 124

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
125
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
126 127 128 129 130 131
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
132
                                  var2shape[temp_varname_map[output_vars[0]]])
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
153 154 155 156 157 158
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

177 178 179 180 181 182 183 184 185 186
        # should reconnect the block_attr ptr to the correct block
        for block_id in range(self._dist_context.block_state.nblock):
            block = partitioned_main_prog.block(block_id)
            for op in block.ops:
                for attr_name in op.all_attrs():
                    if op.attr_type(attr_name) == core.AttrType.BLOCK:
                        relative_id = op._block_attr_id(attr_name)
                        op._set_attr(attr_name,
                                     partitioned_main_prog.block(relative_id))

187 188 189 190 191 192 193 194
        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
195 196
                dist_g = self._get_dist_var_by_serial_var(
                    g, partitioned_main_prog)
197 198 199 200 201 202 203 204
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
205

206 207 208 209 210 211 212 213 214
        last_fwd_op_idx = -1
        for idx, op in enumerate(ref_block.ops):
            if is_loss_op(op):
                last_fwd_op_idx = idx
                break

        if last_fwd_op_idx == -1:
            last_fwd_op_idx = len(ref_block.ops)

215 216 217
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
218
            if idx <= last_fwd_op_idx:
219 220
                forward_op_id2forward_op[
                    serial_ops[idx].desc.original_id()] = serial_ops[idx]
221

222
        # partiiton
Z
zhaoyingli 已提交
223
        appended_grad_times = 0
224 225
        for idx, op in enumerate(serial_ops):

Z
zhaoyingli 已提交
226
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
227 228
            if is_backward_op(op) and (is_forward_op(serial_ops[idx - 1])
                                       or is_loss_op(serial_ops[idx - 1])):
Z
zhaoyingli 已提交
229 230
                if not op_dist_attr.is_recompute:
                    appended_grad_times += 1
231 232 233 234 235

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
236 237 238 239
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
240 241 242 243 244 245 246 247 248 249
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
250
                    _partition_var(self._dist_context, ref_block, target_block,
251 252 253 254 255
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
256
            if is_forward_op(op) or op_dist_attr.is_recompute:
257 258 259 260 261 262 263 264 265 266
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
267 268 269 270 271
                grad_var_to_var = self._dist_context.dist_op_context.grad_var_to_var[
                    appended_grad_times]
                dist_op_backward_impl.backward(
                    self._dist_context, **kinputs, **koutputs,
                    **{"grad_var_to_var": grad_var_to_var})
272
            elif is_optimize_op(op):
273
                # NOTE: BACKWARD_ONLY_DIST_OPS's op_role must 2 because of 1F1B PASS
274
                kinputs, koutputs = dist_op_context.prepare_context(op)
275 276 277
                dist_op_opt_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_opt_impl.backward(self._dist_context, **kinputs,
278
                                          **koutputs, **{"grad_var_to_var": {}})
279
            else:
280
                raise NotImplementedError(
281 282
                    "partitioner only support forward and backward, optimize ops, but got {}"
                    .format(str(op)))
283

284 285 286 287 288 289
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
290
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
291 292
        ]
        var_dist_attrs = [
293
            self._dist_context.get_tensor_dist_attr_for_program(var)
294
            for var in vars_ if (var.type not in __not_shape_var_type__)
295 296 297 298 299 300 301 302 303
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

304 305 306 307 308 309 310 311
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

312 313 314 315

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
316 317
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
318 319 320
    if mapping == []:
        return var_shape

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


338
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
339 340
                         dst_shape):
    # NOTE hack to copied Parameter
341
    # not initialized parameter, need to initialize it
342 343 344 345 346 347 348
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

349 350 351 352 353 354 355 356 357 358 359
    param = Parameter(block=dst_block,
                      type=src_var.type,
                      name=dst_varname,
                      shape=dst_shape,
                      dtype=src_var.dtype,
                      lod_level=src_var.lod_level,
                      error_clip=src_var.error_clip,
                      stop_gradient=src_var.stop_gradient,
                      is_data=src_var.is_data,
                      belong_to_optimizer=src_var.belong_to_optimizer,
                      **copied_kwargs)
360

361
    return param
362 363


364 365
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
366 367 368 369 370 371 372 373 374 375
    var = dst_block.create_var(type=src_var.type,
                               name=dst_varname,
                               shape=dst_shape,
                               dtype=src_var.dtype,
                               lod_level=src_var.lod_level,
                               persistable=src_var.persistable,
                               error_clip=src_var.error_clip,
                               stop_gradient=src_var.stop_gradient,
                               is_data=src_var.is_data,
                               belong_to_optimizer=src_var.belong_to_optimizer)
376

377
    return var
378 379


380
def _partition_var(dist_context, src_block, dst_block, src_varname,
381 382 383 384 385 386
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

387
    if src_var.type in __not_shape_var_type__:
388
        persist = getattr(src_var, 'persistable', False)
389 390 391 392
        new_var = dst_block.create_var(type=src_var.type,
                                       name=dst_varname,
                                       persistable=persist,
                                       stop_gradient=True)
J
JZ-LIANG 已提交
393
        target_shape = None
394
    else:
395
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
396 397 398
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
399 400
            new_var = _partition_parameter(dist_context, src_var, dst_block,
                                           dst_varname, target_shape)
401
        else:
402 403 404
            new_var = _partition_intermediate_var(dist_context, src_var,
                                                  dst_block, dst_varname,
                                                  target_shape)
405 406 407 408 409 410

    dist_attr = copy.deepcopy(
        dist_context.get_tensor_dist_attr_for_program(src_var))
    assert dist_attr is not None
    dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr)

J
JZ-LIANG 已提交
411
    return target_shape
412 413


414 415 416
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
417 418 419
    if backward_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[
            backward_op.desc.original_id()]
420 421 422
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
423 424 425 426 427
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
428

429
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
430 431
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
432 433
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
434
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
435
        return dist_op_impl
J
JZ-LIANG 已提交
436 437 438

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
439 440 441 442


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
443 444 445 446
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl