brpc_service_sparse_sgd_test.cc 11.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unistd.h>
#include <condition_variable>  // NOLINT
#include <string>
#include <thread>  // NOLINT

#include "google/protobuf/text_format.h"
T
tangwei12 已提交
21

T
tangwei12 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"

#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/service/brpc_ps_client.h"
#include "paddle/fluid/distributed/service/brpc_ps_server.h"
#include "paddle/fluid/distributed/service/env.h"
#include "paddle/fluid/distributed/service/ps_client.h"
#include "paddle/fluid/distributed/service/sendrecv.pb.h"
#include "paddle/fluid/distributed/service/service.h"
C
Chengmo 已提交
35 36 37 38
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/printf.h"
T
tangwei12 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace math = paddle::operators::math;
namespace memory = paddle::memory;
namespace distributed = paddle::distributed;

void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
  auto x_var = scope->Var("x");
  x_var->GetMutable<framework::LoDTensor>();
}

void InitTensorsOnClient(framework::Scope* scope, platform::CPUPlace* place,
                         int64_t rows_numel) {
  CreateVarsOnScope(scope, place);

  auto x_var = scope->Var("x")->GetMutable<framework::LoDTensor>();
  float* x_ptr =
      x_var->mutable_data<float>(framework::DDim({1, rows_numel}), *place);
  for (int64_t i = 0; i < rows_numel; ++i) x_ptr[i] = 1.0;
}

void GetDownpourSparseTableProto(
    ::paddle::distributed::TableParameter* sparse_table_proto) {
  sparse_table_proto->set_table_id(0);
  sparse_table_proto->set_table_class("CommonSparseTable");
  sparse_table_proto->set_shard_num(256);
  sparse_table_proto->set_type(::paddle::distributed::PS_SPARSE_TABLE);
  ::paddle::distributed::TableAccessorParameter* accessor_proto =
      sparse_table_proto->mutable_accessor();
  ::paddle::distributed::CommonAccessorParameter* common_proto =
      sparse_table_proto->mutable_common();

  accessor_proto->set_accessor_class("CommMergeAccessor");
  accessor_proto->set_fea_dim(0);
  accessor_proto->set_embedx_dim(10);

  common_proto->set_name("sgd");
  common_proto->set_table_name("MergedDense");
  common_proto->set_trainer_num(1);
  common_proto->set_sync(false);
  common_proto->add_params("Param");
  common_proto->add_dims(10);
  common_proto->add_initializers("uniform_random&0&-1.0&1.0");
  common_proto->add_params("LearningRate");
  common_proto->add_dims(1);
  common_proto->add_initializers("fill_constant&1.0");
}

::paddle::distributed::PSParameter GetServerProto() {
  // Generate server proto desc
  ::paddle::distributed::PSParameter server_fleet_desc;
  ::paddle::distributed::ServerParameter* server_proto =
      server_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
98
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* sparse_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(sparse_table_proto);
  return server_fleet_desc;
}

::paddle::distributed::PSParameter GetWorkerProto() {
  ::paddle::distributed::PSParameter worker_fleet_desc;
  ::paddle::distributed::WorkerParameter* worker_proto =
      worker_fleet_desc.mutable_worker_param();

  ::paddle::distributed::DownpourWorkerParameter* downpour_worker_proto =
      worker_proto->mutable_downpour_worker_param();

  ::paddle::distributed::TableParameter* worker_sparse_table_proto =
      downpour_worker_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(worker_sparse_table_proto);

  ::paddle::distributed::ServerParameter* server_proto =
      worker_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
128
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* server_sparse_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(server_sparse_table_proto);

  return worker_fleet_desc;
}

/*-------------------------------------------------------------------------*/

std::string ip_ = "127.0.0.1";
uint32_t port_ = 4209;

std::vector<std::string> host_sign_list_;

std::shared_ptr<paddle::distributed::PSServer> pserver_ptr_;

std::shared_ptr<paddle::distributed::PSClient> worker_ptr_;

void RunServer() {
  ::paddle::distributed::PSParameter server_proto = GetServerProto();

  auto _ps_env = paddle::distributed::PaddlePSEnvironment();
  _ps_env.set_ps_servers(&host_sign_list_, 1);
  pserver_ptr_ = std::shared_ptr<paddle::distributed::PSServer>(
      paddle::distributed::PSServerFactory::create(server_proto));
C
Chengmo 已提交
159 160 161 162
  std::vector<framework::ProgramDesc> empty_vec;
  framework::ProgramDesc empty_prog;
  empty_vec.push_back(empty_prog);
  pserver_ptr_->configure(server_proto, _ps_env, 0, empty_vec);
T
tangwei12 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  pserver_ptr_->start(ip_, port_);
}

void RunClient(std::map<uint64_t, std::vector<paddle::distributed::Region>>&
                   dense_regions) {
  ::paddle::distributed::PSParameter worker_proto = GetWorkerProto();
  paddle::distributed::PaddlePSEnvironment _ps_env;
  auto servers_ = host_sign_list_.size();
  _ps_env = paddle::distributed::PaddlePSEnvironment();
  _ps_env.set_ps_servers(&host_sign_list_, servers_);
  worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
      paddle::distributed::PSClientFactory::create(worker_proto));
  worker_ptr_->configure(worker_proto, dense_regions, _ps_env, 0);
}

void RunBrpcPushSparse() {
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
  auto ph_host = paddle::distributed::PSHost(ip_, port_, 0);
  host_sign_list_.push_back(ph_host.serialize_to_string());

  // Srart Server
  std::thread server_thread(RunServer);
  sleep(1);

  // Start Client
  framework::Scope client_scope;
  platform::CPUPlace place;
  InitTensorsOnClient(&client_scope, &place, 100);
  std::map<uint64_t, std::vector<paddle::distributed::Region>> dense_regions;
  dense_regions.insert(
      std::pair<uint64_t, std::vector<paddle::distributed::Region>>(0, {}));
  auto regions = dense_regions[0];
  framework::Variable* var = client_scope.FindVar("x");
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  RunClient(dense_regions);
  std::vector<uint64_t> fea_keys(10);
  std::vector<float> fea_values(100);
  std::vector<float> fea_temp_values(100);
  std::vector<float*> fea_value_ptr(10);
  std::vector<float*> fea_temp_value_ptr(10);

  for (size_t idx = 0; idx < fea_keys.size(); ++idx) {
    fea_keys[idx] = (uint64_t)idx;
    fea_value_ptr[idx] = fea_values.data() + idx * 10;
    fea_temp_value_ptr[idx] = fea_temp_values.data() + idx * 10;
  }

  /*-----------------------Test Server Init----------------------------------*/
  LOG(INFO) << "Run pull_sparse_param";
  auto pull_status = worker_ptr_->pull_sparse(fea_value_ptr.data(), 0,
                                              fea_keys.data(), fea_keys.size());
  pull_status.wait();
  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    fea_values.data()[idx] *= 2.0;
  }

  /*-----------------------Test Push Param----------------------------------*/

  LOG(INFO) << "Run push_sparse_param";
  paddle::distributed::DownpourBrpcClosure* closure_push_param =
      new paddle::distributed::DownpourBrpcClosure(1, [&](void* done) {
        int ret = 0;
        auto* closure = (paddle::distributed::DownpourBrpcClosure*)done;
        for (size_t i = 0; i < 1; ++i) {
T
tangwei12 已提交
229 230
          if (closure->check_response(
                  i, paddle::distributed::PS_PUSH_SPARSE_PARAM) != 0) {
T
tangwei12 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
  auto push_status = worker_ptr_->push_sparse_param(
      0, fea_keys.data(), (const float**)fea_value_ptr.data(), fea_keys.size(),
      closure_push_param);
  push_status.wait();

  auto pull_param_status = worker_ptr_->pull_sparse(
      fea_temp_value_ptr.data(), 0, fea_keys.data(), fea_keys.size());
  pull_param_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(fea_temp_values[idx], fea_values[idx]);
  }

  /*-----------------------Test Push Grad----------------------------------*/

  paddle::distributed::DownpourBrpcClosure* closure_push_grad =
      new paddle::distributed::DownpourBrpcClosure(1, [&](void* done) {
        int ret = 0;
        auto* closure = (paddle::distributed::DownpourBrpcClosure*)done;
        for (size_t i = 0; i < 1; ++i) {
T
tangwei12 已提交
257 258
          if (closure->check_response(
                  i, paddle::distributed::PS_PUSH_SPARSE_TABLE) != 0) {
T
tangwei12 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });

  LOG(INFO) << "Run pull_sparse_grad";
  std::vector<float*> push_g_vec;
  for (auto i = 0; i < static_cast<int>(fea_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * 10);
  }
  auto push_grad_status = worker_ptr_->push_sparse_raw_gradient(
      0, fea_keys.data(), (const float**)push_g_vec.data(), fea_keys.size(),
      closure_push_grad);
  push_grad_status.wait();

  auto pull_update_status = worker_ptr_->pull_sparse(
      fea_temp_value_ptr.data(), 0, fea_keys.data(), fea_keys.size());
  pull_update_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(fea_temp_values[idx], fea_values[idx] - 1.0);
  }

  LOG(INFO) << "Run stop_server";
  worker_ptr_->stop_server();
  LOG(INFO) << "Run finalize_worker";
  worker_ptr_->finalize_worker();
  server_thread.join();
}

TEST(RunBrpcPushSparse, Run) { RunBrpcPushSparse(); }