nn.py 255.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
162
       is_test=False,
163
       name=None):
Y
Yu Yang 已提交
164
    """
165
    **Fully Connected Layer**
Y
Yu Yang 已提交
166

167 168 169 170 171 172 173 174
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
175
    to the output as well.
C
caoying03 已提交
176

C
caoying03 已提交
177
    This process can be formulated as follows:
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

C
caoying03 已提交
185 186 187 188
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
C
caoying03 已提交
190
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
191 192

    Args:
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
208 209
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
210
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
211
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
212
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
213

214
    Returns:
F
fengjiayi 已提交
215
        Variable: The transformation result.
216 217

    Raises:
C
caoying03 已提交
218
        ValueError: If rank of the input tensor is less than 2.
219 220 221 222

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
223
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
224
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
225
    """
C
caoying03 已提交
226

C
caoying03 已提交
227
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
228 229 230 231

    dtype = helper.input_dtype()

    mul_results = []
232 233
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
234 235 236
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
237

Y
Yu Yang 已提交
238
        w = helper.create_parameter(
239 240
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
241
        helper.append_op(
242 243 244
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
245
            outputs={"Out": tmp},
M
mozga-intel 已提交
246 247
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
248 249 250 251
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
252
    else:
253 254
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
255 256 257
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
258
            attrs={"use_mkldnn": False})
259 260 261 262
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
263 264


265 266 267
def embedding(input,
              size,
              is_sparse=False,
268
              is_distributed=False,
269 270 271
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
272
    """
273 274
    **Embedding Layer**

275
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
276 277
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
278 279 280

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
281 282

    Args:
283 284 285 286 287
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
288
        is_distributed(bool): Whether to run lookup table from remote parameter server.
289 290
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
291
            with zeros whenever lookup encounters it in :attr:`input`. If
292
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
293 294
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
295
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
296

297 298 299
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
300

301 302
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
303

C
chengduoZH 已提交
304
          dict_size = len(dataset.ids)
305
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
306
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
307 308 309 310 311 312
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
313 314
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
315 316 317 318 319
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
320 321 322 323 324
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
325 326 327
    return tmp


Y
yi.wu 已提交
328
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
329 330
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
331 332
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
333 334 335 336 337 338 339
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
340 341
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
342
    """
Y
yi.wu 已提交
343
    ${comment}
Y
Yibing Liu 已提交
344 345

    Args:
Y
yi.wu 已提交
346 347
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
348 349 350 351 352 353
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
354
        param_attr(ParamAttr|None): The parameter attribute for the learnable
355
                               hidden-hidden weights.
Y
Yibing Liu 已提交
356 357 358

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
359 360
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduozh 已提交
361 362 363 364 365

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
366
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
367 368 369
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
370

371
                              1. `use_peepholes = False`
Y
yi.wu 已提交
372 373
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
374
                              2. `use_peepholes = True`
Y
yi.wu 已提交
375
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
376
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
377
                                 - The shape is (1 x 7D).
C
chengduozh 已提交
378 379 380 381 382

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
383 384 385 386 387 388 389 390
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
391 392

    Returns:
Y
Yibing Liu 已提交
393 394
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
395

Y
Yibing Liu 已提交
396
    Examples:
Y
Yibing Liu 已提交
397 398
        .. code-block:: python

Y
Yibing Liu 已提交
399 400
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduozh 已提交
401
                                           bias_attr=False)
Y
Yibing Liu 已提交
402 403
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
404
    """
C
chengduozh 已提交
405
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
406
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
407
    size = size // 4
Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417 418 419
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
420 421 422 423 424 425 426 427 428 429
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
430 431 432

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
433
        inputs=inputs,
Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
450 451 452 453 454 455 456 457 458 459 460
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
461 462
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
463 464 465
    """
    **Dynamic LSTMP Layer**

466 467 468 469 470 471
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
472 473 474 475 476

    The formula is as follows:

    .. math::

477
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
478

479
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
480

481
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
482

483
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
484

485
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
486

487
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
488

489
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
490

Y
Yibing Liu 已提交
491 492 493 494 495 496
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
497
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
498
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
499
          bias vector).
Y
Yibing Liu 已提交
500 501 502
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
503
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
504
    * :math:`h`: The hidden state.
505
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
506 507
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
508
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
509
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
510
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
511 512
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
513 514 515 516

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
517

Y
Yibing Liu 已提交
518 519 520 521 522 523 524 525 526 527 528 529
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
530
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
531 532
                               hidden-hidden weight and projection weight.

533 534
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
535 536
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
537 538
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
539
                               - The shape of projection weight is (D x P).
C
chengduozh 已提交
540 541 542 543 544

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
545
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
546 547 548 549 550 551
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
552
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
553 554 555
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
556
                                - The shape is (1 x 7D).
C
chengduozh 已提交
557 558 559 560 561

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
562 563 564 565 566 567 568 569 570
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
571
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
572 573
                              default "tanh".
        proj_activation(str): The activation for projection output.
574
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
575 576
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
577 578
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
579 580

    Returns:
581 582 583 584
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
585 586

    Examples:
587

Y
Yibing Liu 已提交
588 589
        .. code-block:: python

590 591 592 593
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
594
            hidden_dim, proj_dim = 512, 256
595
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
596
                                     act=None, bias_attr=None)
597 598 599
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
600 601 602 603
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
604
    """
605

C
chengduozh 已提交
606
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
607
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
608
    size = size // 4
Y
Yibing Liu 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
653 654 655 656 657 658 659 660 661
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
662
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
663

664
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
665
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
666

G
guosheng 已提交
667 668 669 670 671 672 673 674 675
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
676

G
guosheng 已提交
677
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
678

G
guosheng 已提交
679
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
680 681
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
682 683 684 685
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
686
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
687 688

    Args:
689 690
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
691
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
692
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
693 694
            is the hidden size.
        size(int): The dimension of the gru cell.
695
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
696 697
            hidden-hidden weight matrix. Note:

698
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
699
              :math:`D` is the hidden size.
700
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
701
              The first part are weights of the update gate and reset gate with
702
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
703
              candidate hidden state with shape :math:`(D \\times D)`.
704 705 706 707 708 709 710 711 712 713 714 715

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
716
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
717 718 719
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
720
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
721
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
722 723 724 725
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
726 727

    Returns:
G
guosheng 已提交
728
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
729
            and sequence length is the same with the input.
730

G
guosheng 已提交
731
    Examples:
732

G
guosheng 已提交
733 734
        .. code-block:: python

735 736 737 738
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
739
            hidden_dim = 512
740
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
741 742 743 744 745 746 747 748 749 750
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
751
    batch_size = input.shape[0]
G
guosheng 已提交
752 753 754
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
755 756 757
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
781 782 783
def gru_unit(input,
             hidden,
             size,
784 785
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
786
             activation='tanh',
787
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
788
    """
789
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
790

791 792
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
793

794
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
795

796
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
797

798
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
799 800

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
801 802 803
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
804 805
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

806 807
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
808 809 810
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
811 812 813

    Args:
        input (Variable): The fc transformed input value of current step.
814
        hidden (Variable): The hidden value of gru unit from previous step.
815
        size (integer): The input dimension value.
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
837 838 839 840
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
841

842 843 844 845 846 847
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
848

849
             # assuming we have x_t_data and prev_hidden of size=10
850
             x_t = fluid.layers.fc(input=x_t_data, size=30)
851 852
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
853 854 855 856 857 858 859 860 861 862 863 864

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
865
    size = size // 3
Y
Yu Yang 已提交
866 867

    # create weight
868 869
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
870

871 872 873 874
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
875
    # create bias
876
    if helper.bias_attr:
Y
Yu Yang 已提交
877 878 879
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
880
        inputs['Bias'] = bias
Y
Yu Yang 已提交
881 882 883

    helper.append_op(
        type='gru_unit',
884
        inputs=inputs,
Y
Yu Yang 已提交
885 886 887 888 889 890
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
891 892
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
893 894 895 896 897
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
898
@templatedoc()
899
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
900 901 902 903 904 905 906
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
907
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
908 909 910 911
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
912 913 914
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
915 916

    """
Y
Yu Yang 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
942
@templatedoc()
943
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
944 945 946 947 948
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
949

Y
yuyang18 已提交
950
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
951

Y
yuyang18 已提交
952 953 954
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
955
        Variable: ${viterbi_path_comment}
956

Y
yi.wu 已提交
957 958 959 960 961
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
962
    """
Y
Yu Yang 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
976
@templatedoc()
F
fengjiayi 已提交
977
def cos_sim(X, Y):
Y
Yu Yang 已提交
978
    """
Y
yi.wu 已提交
979 980 981
    ${comment}

    Args:
982 983
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
984

Y
yi.wu 已提交
985
    Returns:
986
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
987
    """
F
fengjiayi 已提交
988
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


1002
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
1003 1004 1005 1006 1007
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1008
    training. The dropout operator randomly sets (according to the given dropout
1009 1010 1011 1012
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1013 1014
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1015 1016 1017 1018 1019 1020 1021
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
1022 1023

    Returns:
1024
        Variable: A tensor variable is the shape with `x`.
1025 1026

    Examples:
1027

1028 1029
        .. code-block:: python

1030 1031
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1032 1033
    """

F
fengjiayi 已提交
1034
    helper = LayerHelper('dropout', **locals())
1035 1036
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1037 1038 1039 1040

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1041 1042 1043 1044 1045
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1046 1047 1048 1049 1050 1051
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1052 1053 1054
    return out


1055
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1056
    """
Y
Yibing Liu 已提交
1057 1058
    **Cross Entropy Layer**

1059 1060 1061
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1062 1063

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1064
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1065

Y
Yibing Liu 已提交
1066
        .. math::
Y
yangyaming 已提交
1067

Y
Yibing Liu 已提交
1068 1069 1070
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1071 1072
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1073 1074 1075 1076 1077

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1078
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1079 1080 1081
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1082 1083
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1084
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1085

Y
Yibing Liu 已提交
1086
    Args:
Y
yangyaming 已提交
1087
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1088 1089 1090 1091
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1092
        label (Variable|list): the ground truth which is a 2-D tensor. When
1093 1094 1095 1096
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1097
        soft_label (bool): a flag indicating whether to
1098
                                           interpretate the given labels as soft
1099
                                           labels. Default: `False`.
M
minqiyang 已提交
1100 1101
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1102
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1103 1104 1105 1106 1107

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1108 1109 1110 1111 1112
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1113 1114 1115 1116 1117 1118

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1119
    """
F
fengjiayi 已提交
1120
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1127 1128
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1129 1130 1131
    return out


F
fengjiayi 已提交
1132
def square_error_cost(input, label):
Y
Yu Yang 已提交
1133
    """
1134 1135
    **Square error cost layer**

1136 1137
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1152 1153
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1154 1155

    Returns:
G
guosheng 已提交
1156
        Variable: The tensor variable storing the element-wise squared error \
1157
                  difference of input and label.
1158 1159 1160 1161 1162 1163 1164 1165

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1166
    """
F
fengjiayi 已提交
1167
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1177 1178
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1179 1180 1181
    return square_out


Y
yi.wu 已提交
1182
@templatedoc()
Y
Yu Yang 已提交
1183 1184 1185 1186
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1187
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1188
    """
Y
yi.wu 已提交
1189
    **Chunk Evaluator**
Y
yi.wu 已提交
1190

Y
yangyaming 已提交
1191
    This function computes and outputs the precision, recall and
1192
    F1-score of chunk detection.
Y
yi.wu 已提交
1193

Y
yi.wu 已提交
1194 1195 1196 1197 1198 1199 1200 1201
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1202

Y
yi.wu 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1228

Y
yi.wu 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1253
    Args:
1254 1255 1256 1257 1258
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1259

Y
yi.wu 已提交
1260
    Returns:
Y
update  
yi.wu 已提交
1261 1262 1263
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1264

Y
yi.wu 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1277
    """
F
fengjiayi 已提交
1278
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1279 1280 1281 1282 1283

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1284 1285 1286
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1295 1296 1297 1298
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1299 1300 1301
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1302 1303
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1304
        })
1305 1306
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1307 1308


1309
@templatedoc()
Y
Yu Yang 已提交
1310 1311 1312 1313 1314 1315 1316
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduozh 已提交
1317 1318
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1319 1320 1321 1322
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1323 1324 1325 1326 1327 1328 1329

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduozh 已提交
1330
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
C
chengduozh 已提交
1331
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1332 1333 1334
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduozh 已提交
1335
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1336 1337 1338
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
C
chengduozh 已提交
1339 1340
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduozh 已提交
1341 1342
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1343

1344 1345
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1364
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1365 1366 1367 1368 1369 1370
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduozh 已提交
1371
def sequence_softmax(input, use_cudnn=False, name=None):
1372 1373 1374
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1375
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1392 1393 1394
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduozh 已提交
1418
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1419
    """
1420
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1421
    has the same shape as the input.
Q
qiaolongfei 已提交
1422

1423 1424 1425 1426 1427 1428
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1429
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1430 1431 1432 1433 1434 1435 1436

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1437
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1438 1439 1440 1441 1442 1443 1444 1445

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1446 1447 1448
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1472 1473 1474
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1475 1476
           stride=1,
           padding=0,
1477
           dilation=1,
Y
Yu Yang 已提交
1478 1479 1480
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1481
           use_cudnn=True,
1482 1483
           act=None,
           name=None):
Y
Yu Yang 已提交
1484
    """
C
chengduoZH 已提交
1485
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1486 1487
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1488
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1489 1490 1491 1492 1493 1494 1495
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1496 1497 1498
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1499

1500
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1501

C
chengduoZH 已提交
1502 1503
    .. math::

C
refine  
chengduoZH 已提交
1504
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1505

T
tensor-tang 已提交
1506
    Where:
C
chengduoZH 已提交
1507

1508 1509 1510 1511 1512
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1513
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1514 1515 1516

    Example:

1517 1518
        - Input:

W
weixing02 已提交
1519
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1520

W
weixing02 已提交
1521
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1522

1523
        - Output:
T
tensor-tang 已提交
1524

W
weixing02 已提交
1525
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1526

C
chengduoZH 已提交
1527
        Where
1528 1529

        .. math::
C
chengduoZH 已提交
1530

W
weixing02 已提交
1531 1532
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1533 1534

    Args:
1535
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1536
        num_filters(int): The number of filter. It is as same as the output
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduozh 已提交
1554
            connected to the second half of the input channels. Default: groups=1.
C
chengduozh 已提交
1555
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1556 1557 1558 1559 1560
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
C
chengduozh 已提交
1561
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1562 1563 1564
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1565 1566
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1567 1568
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1569
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1570
            will be named automatically. Default: None
C
chengduoZH 已提交
1571 1572

    Returns:
G
guosheng 已提交
1573
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1574 1575
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1576
    Raises:
1577 1578
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1579

C
chengduoZH 已提交
1580 1581 1582
    Examples:
        .. code-block:: python

1583 1584
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1585 1586 1587
    """

    num_channels = input.shape[1]
C
chengduozh 已提交
1588
    assert param_attr is not False, "param_attr should not be False here."
1589
    l_type = 'conv2d'
X
xzl 已提交
1590 1591
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1592
        l_type = 'depthwise_conv2d'
1593 1594 1595 1596

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1597 1598 1599 1600 1601
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1602
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1603

C
chengduoZH 已提交
1604 1605 1606
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1607
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1608

C
chengduoZH 已提交
1609 1610
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1611 1612

    input_shape = input.shape
M
minqiyang 已提交
1613
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1614 1615

    def _get_default_param_initializer():
C
chengduozh 已提交
1616 1617
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1629
        type=l_type,
Y
Yu Yang 已提交
1630 1631 1632 1633 1634
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1635 1636 1637
        attrs={
            'strides': stride,
            'paddings': padding,
1638
            'dilations': dilation,
C
chengduoZH 已提交
1639
            'groups': groups,
1640
            'use_cudnn': use_cudnn,
1641
            'use_mkldnn': False
C
chengduoZH 已提交
1642
        })
Y
Yu Yang 已提交
1643 1644 1645 1646 1647 1648

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1666 1667 1668 1669 1670 1671
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1681 1682
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1683 1684 1685
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1686
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1712
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1713 1714
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1715
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1716 1717
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1718
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1719 1720
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1721
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1722 1723 1724 1725 1726 1727
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduozh 已提交
1728
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1729 1730 1731 1732 1733
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
C
chengduozh 已提交
1734
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1735 1736 1737
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1738 1739
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1740 1741
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1742
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1743
            will be named automatically. Default: None.
C
chengduoZH 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1756 1757
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1758 1759 1760
    """

    l_type = 'conv3d'
C
chengduozh 已提交
1761
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1772
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduozh 已提交
1786 1787 1788
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1812
            'use_mkldnn': False
C
chengduoZH 已提交
1813 1814
        })

1815
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1816 1817 1818 1819

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1820
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1821
    """
Y
yangyaming 已提交
1822 1823 1824
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1836
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1837 1838 1839 1840 1841
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1842
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1843 1844 1845 1846 1847 1848 1849

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1850 1851
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1852

L
Luo Tao 已提交
1853 1854
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1855
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1856 1857 1858 1859 1860 1861 1862 1863
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1864

Y
yangyaming 已提交
1865
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1866 1867 1868 1869 1870
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1871 1872
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1873
    """
F
fengjiayi 已提交
1874
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1886 1887 1888 1889 1890
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1891 1892 1893
    return pool_out


C
add doc  
chengduoZH 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1919
def sequence_first_step(input):
L
Luo Tao 已提交
1920
    """
L
Luo Tao 已提交
1921
    This function gets the first step of sequence.
L
Luo Tao 已提交
1922 1923 1924 1925

    .. code-block:: text

       x is a 1-level LoDTensor:
1926
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1927 1928 1929 1930 1931
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1932
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1933
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1934

L
Luo Tao 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1944

Y
yangyaming 已提交
1945
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1946 1947 1948
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1949 1950 1951
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1952
def sequence_last_step(input):
L
Luo Tao 已提交
1953
    """
L
Luo Tao 已提交
1954
    This function gets the last step of sequence.
L
Luo Tao 已提交
1955 1956 1957 1958

    .. code-block:: text

       x is a 1-level LoDTensor:
1959
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1960 1961 1962 1963 1964
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1965
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1966
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1967

L
Luo Tao 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1977

Y
yangyaming 已提交
1978
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1979 1980 1981
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1982 1983 1984
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1985
@templatedoc()
Y
Yu Yang 已提交
1986
def pool2d(input,
C
chengduoZH 已提交
1987 1988
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1989 1990
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1991
           global_pooling=False,
C
chengduoZH 已提交
1992
           use_cudnn=True,
1993
           ceil_mode=False,
C
caoying03 已提交
1994
           name=None):
Y
Yu Yang 已提交
1995
    """
F
fengjiayi 已提交
1996
    ${comment}
1997 1998

    Args:
1999 2000 2001
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2002
                          feature, and W is the width of the feature.
2003
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2004
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2005
        pool_type: ${pooling_type_comment}
2006 2007
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2008 2009 2010
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2011
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2012 2013
                        layer will be named automatically.

2014
    Returns:
F
fengjiayi 已提交
2015
        Variable: The pooling result.
F
fengjiayi 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2029 2030 2031 2032
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2033
                            global_pooling=False)
Y
Yu Yang 已提交
2034 2035 2036 2037 2038
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2039

C
chengduoZH 已提交
2040 2041 2042 2043 2044
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2045 2046 2047 2048
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2049 2050
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2051

C
Add doc  
chengduoZH 已提交
2052
    l_type = 'pool2d'
2053 2054

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2055 2056 2057 2058
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2070
            "use_mkldnn": False
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2087
    pooling configurations mentioned in input parameters.
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2100

2101
    Returns:
2102
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2103 2104 2105 2106 2107
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2108

C
chengduoZH 已提交
2109 2110 2111 2112 2113
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2114 2115 2116
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2117

C
chengduoZH 已提交
2118 2119
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2120

2121 2122
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2123 2124 2125 2126
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2127
        type=l_type,
Y
Yu Yang 已提交
2128 2129 2130 2131 2132 2133 2134
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2135
            "paddings": pool_padding,
2136
            "use_cudnn": use_cudnn,
2137
            "ceil_mode": ceil_mode,
2138
            "use_mkldnn": False
Y
Yu Yang 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2151
               data_layout='NCHW',
Y
Yang Yang 已提交
2152
               in_place=False,
2153 2154
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2155
               moving_variance_name=None,
2156 2157
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2158
    """
Q
qiaolongfei 已提交
2159 2160 2161 2162
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2163

Q
qiaolongfei 已提交
2164
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2165

Q
qiaolongfei 已提交
2166 2167
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2168 2169 2170
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2183 2184

    Args:
Q
qiaolongfei 已提交
2185
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2186 2187 2188 2189
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduozh 已提交
2190 2191 2192 2193 2194 2195 2196 2197
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2198
        data_layout(string, default NCHW): NCHW|NHWC
2199
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2200 2201 2202 2203
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2204
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2205
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2206 2207

    Returns:
Q
qiaolongfei 已提交
2208
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2209 2210 2211 2212 2213 2214 2215

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2216
    """
C
chengduozh 已提交
2217
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2240
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2241

2242 2243
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2244 2245 2246
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2247
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2248
        shape=param_shape,
2249 2250 2251 2252 2253 2254 2255
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2256
            trainable=False,
W
wanghaoshuang 已提交
2257
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2258
        shape=param_shape,
2259 2260
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2261 2262 2263 2264 2265 2266

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2267 2268
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2269

2270
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2288 2289 2290 2291
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2292
            "use_mkldnn": False,
2293
            "fuse_with_relu": fuse_with_relu
2294
        })
Y
Yu Yang 已提交
2295 2296 2297 2298

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2299
@templatedoc()
G
guosheng 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2310
    ${comment}
G
guosheng 已提交
2311 2312 2313

    The formula is as follows:

Y
yuyang18 已提交
2314
    ..  math::
G
guosheng 已提交
2315 2316 2317 2318 2319 2320 2321

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2322 2323 2324 2325 2326 2327 2328 2329
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2330

G
guosheng 已提交
2331 2332
    Args:
        input(Variable): The input tensor variable.
2333
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2334
            normalization. Default True.
2335
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2336 2337
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2338
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2339
            Default 1.
2340
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2341
            division by zero. Default 1e-05.
G
guosheng 已提交
2342
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2343 2344 2345 2346
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2347
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2348 2349 2350 2351
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2352
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2353 2354 2355
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2356 2357

    Returns:
Y
yuyang18 已提交
2358
        ${y_comment}
G
guosheng 已提交
2359 2360 2361

    Examples:

Y
yuyang18 已提交
2362 2363 2364
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2380
    if shift:
G
guosheng 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2405 2406 2407 2408
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2409 2410 2411
                     padding=0,
                     stride=1,
                     dilation=1,
2412
                     groups=None,
C
caoying03 已提交
2413
                     param_attr=None,
2414
                     bias_attr=None,
C
chengduoZH 已提交
2415
                     use_cudnn=True,
2416
                     act=None,
C
caoying03 已提交
2417
                     name=None):
Y
Yu Yang 已提交
2418
    """
2419 2420 2421 2422 2423 2424 2425 2426
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2427 2428
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2429 2430 2431
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2432 2433 2434 2435 2436

    For each input :math:`X`, the equation is:

    .. math::

2437
        Out = \sigma (W \\ast X + b)
2438

2439
    Where:
2440 2441 2442

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2443 2444 2445 2446
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2447

2448 2449 2450 2451
    Example:

        - Input:

2452
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2453

2454
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2455 2456 2457

        - Output:

2458
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2459 2460

        Where
Y
Yu Yang 已提交
2461

2462 2463
        .. math::

2464 2465 2466 2467
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2468 2469

    Args:
2470 2471 2472 2473
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2474 2475 2476 2477
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduozh 已提交
2496
            Default: groups = 1.
C
chengduozh 已提交
2497
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2498 2499 2500 2501
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
C
chengduozh 已提交
2502
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2503 2504 2505
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2506
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduozh 已提交
2507 2508 2509
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2510
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
2511
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2512 2513

    Returns:
2514
        Variable: The tensor variable storing the convolution transpose result.
2515 2516

    Raises:
2517 2518
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2519 2520 2521 2522

    Examples:
       .. code-block:: python

2523 2524
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2525
    """
C
chengduozh 已提交
2526
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2527 2528 2529 2530 2531 2532 2533 2534
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2535 2536 2537
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2538 2539 2540
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2541

C
chengduoZH 已提交
2542 2543
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2544

Y
Yu Yang 已提交
2545 2546 2547 2548 2549
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2550

Y
Yu Yang 已提交
2551 2552
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2553

C
chengduoZH 已提交
2554
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2555
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2556
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2557
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2558
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2559 2560 2561
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduozh 已提交
2562

2563 2564 2565 2566 2567 2568 2569
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2570
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2571
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduozh 已提交
2572

Y
Yu Yang 已提交
2573 2574 2575
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2576
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2577
    helper.append_op(
2578
        type=op_type,
Y
Yu Yang 已提交
2579 2580
        inputs={'Input': [input],
                'Filter': [img_filter]},
2581
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2582
        attrs={
2583
            'output_size': output_size,
2584 2585 2586 2587 2588
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2589 2590
        })

2591 2592 2593
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2594 2595


2596
def conv3d_transpose(input,
Y
Yu Yang 已提交
2597 2598 2599
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2600 2601 2602
                     padding=0,
                     stride=1,
                     dilation=1,
2603
                     groups=None,
C
caoying03 已提交
2604
                     param_attr=None,
2605
                     bias_attr=None,
C
chengduoZH 已提交
2606
                     use_cudnn=True,
2607
                     act=None,
C
caoying03 已提交
2608
                     name=None):
Y
Yu Yang 已提交
2609
    """
2610
    **Convlution3D transpose layer**
2611

2612
    The convolution3D transpose layer calculates the output based on the input,
2613
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2614 2615 2616 2617 2618 2619
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2620 2621 2622
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2623 2624 2625 2626 2627

    For each input :math:`X`, the equation is:

    .. math::

2628
        Out = \sigma (W \\ast X + b)
2629 2630 2631

    In the above equation:

2632 2633
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2634 2635 2636 2637
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2638

2639 2640 2641 2642
    Example:

        - Input:

2643
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2644

2645
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2646 2647 2648

        - Output:

2649
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2650 2651

        Where
Y
Yu Yang 已提交
2652

2653 2654
        .. math::

2655 2656 2657
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2658 2659

    Args:
2660
        input(Variable): The input image with [N, C, D, H, W] format.
2661 2662 2663
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2664
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2665 2666
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2667
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2668 2669 2670
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2671 2672
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2673
        stride(int|tuple): The stride size. If stride is a tuple, it must
2674 2675
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2676
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2677 2678 2679
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2680 2681 2682 2683 2684
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduozh 已提交
2685
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2686 2687 2688 2689
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
C
chengduozh 已提交
2690
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2691 2692 2693
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2694 2695
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
2696 2697
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2698 2699
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2700 2701

    Returns:
2702
        Variable: The tensor variable storing the convolution transpose result.
2703 2704

    Raises:
2705 2706
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2707 2708 2709 2710

    Examples:
       .. code-block:: python

2711 2712
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2713
    """
C
chengduozh 已提交
2714
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2715 2716
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2717
    if not isinstance(input, Variable):
2718
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2719 2720
    input_channel = input.shape[1]

2721 2722 2723
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2724

C
chengduoZH 已提交
2725 2726 2727
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2728 2729 2730 2731 2732 2733
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2734 2735 2736
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2737

2738
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2739
                         padding[0] - 1) // dilation[0] + 1
2740
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2741
                         padding[1] - 1) // dilation[1] + 1
2742
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2743
                         padding[2] - 1) // dilation[2] + 1
2744
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2745
    else:
2746 2747
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2748

2749
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2750
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2751 2752 2753
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2754
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2755
    helper.append_op(
2756
        type=l_type,
Y
Yu Yang 已提交
2757 2758
        inputs={'Input': [input],
                'Filter': [img_filter]},
2759
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2760 2761 2762 2763
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2764
            'groups': groups,
C
chengduoZH 已提交
2765 2766
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2767

2768 2769
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2770
    return out
Y
yangyaming 已提交
2771 2772


Y
yangyaming 已提交
2773
def sequence_expand(x, y, ref_level=-1, name=None):
2774
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2775 2776 2777 2778
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2779 2780 2781 2782 2783

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2784
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2785
                x.data = [[a], [b], [c], [d]]
2786 2787 2788
                x.dims = [4, 1]

            y is a LoDTensor:
2789 2790
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2791

Y
yangyaming 已提交
2792
            ref_level: 0
2793

Y
yangyaming 已提交
2794
            then output is a 1-level LoDTensor:
2795
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2796
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2797 2798 2799 2800
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2801
                x.data = [[a], [b], [c]]
2802 2803 2804
                x.dims = [3, 1]

            y is a LoDTensor:
2805
                y.lod = [[2, 0, 3]]
2806

Y
yangyaming 已提交
2807
            ref_level: -1
2808

Y
yangyaming 已提交
2809 2810 2811
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2812 2813 2814
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2815 2816
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2817
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2818
                        will be named automatically.
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2829
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2830
    """
Y
yangyaming 已提交
2831
    helper = LayerHelper('sequence_expand', input=x, **locals())
2832 2833 2834
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2835 2836 2837 2838 2839
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2840
    return tmp
2841 2842


C
chengduo 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2908 2909 2910 2911 2912 2913 2914
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2915 2916 2917
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2918
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2919 2920 2921 2922
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2923
            longest original sequence."
M
minqiyang 已提交
2924

F
fengjiayi 已提交
2925
    Returns:
M
minqiyang 已提交
2926
        Variable: The padded sequence batch and the original lengths before
2927
                  padding. All sequences has the same length.
M
minqiyang 已提交
2928

F
fengjiayi 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2943 2944 2945 2946 2947
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2948 2949 2950 2951 2952 2953
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2954 2955
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2956
        attrs={'padded_length': maxlen})
2957
    return out, length
F
fengjiayi 已提交
2958 2959


2960 2961 2962 2963 2964 2965 2966 2967 2968
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2969 2970
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2971 2972 2973

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2974 2975

    This layer does the search in beams for one time step. Specifically, it
2976 2977 2978 2979 2980 2981
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2982

2983 2984 2985 2986 2987 2988 2989 2990
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2991

2992
    Args:
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3018

3019
    Returns:
3020 3021
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3022 3023 3024 3025

    Examples:
        .. code-block:: python

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3054
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3072 3073 3074 3075 3076 3077 3078
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3079

3080 3081 3082 3083 3084 3085 3086 3087 3088
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3089

3090 3091 3092 3093 3094 3095
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3122 3123 3124 3125
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3126
              param_attr=None,
C
caoying03 已提交
3127 3128
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3129 3130 3131 3132
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3133
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3134

3135
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3136

3137
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3138

3139
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3140 3141 3142

            h_t & = o_t tanh(c_t)

3143 3144 3145 3146 3147 3148
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3149 3150 3151

        .. math::

3152
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3153 3154 3155 3156 3157 3158 3159 3160

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3161
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3162 3163

    Args:
Y
yangyaming 已提交
3164 3165 3166 3167 3168 3169
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3170
        forget_bias (float): The forget bias of lstm unit.
C
chengduozh 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3183 3184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3185 3186

    Returns:
Y
yangyaming 已提交
3187
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3188 3189

    Raises:
3190 3191 3192 3193
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3194 3195 3196 3197 3198 3199

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3200
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3201
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3202
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3219
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3220 3221 3222 3223
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3224 3225
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3226 3227 3228
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3229
    size = cell_t_prev.shape[1]
3230
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3231 3232
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3233
                param_attr=param_attr,
3234
                bias_attr=bias_attr)
Y
yangyaming 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3247
    return h, c
G
guosheng 已提交
3248 3249


C
caoying03 已提交
3250
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3251
    """
Y
yangyaming 已提交
3252
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3253 3254 3255

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3256
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3257 3258
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3259 3260
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3261
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3262
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3263
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3264 3265
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3266 3267 3268

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3269

G
guosheng 已提交
3270 3271 3272 3273 3274 3275
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3276
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3277 3278 3279 3280
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3281 3282 3283 3284

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3285
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3286 3287 3288
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3289 3290 3291
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3292 3293
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3294 3295 3296 3297 3298
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3299
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3300 3301 3302 3303
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3304 3305


C
caoying03 已提交
3306
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3307
    """
Y
Yibing Liu 已提交
3308
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3309 3310 3311

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3312 3313 3314
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3315
            must be in the range :math:`[-rank(input), rank(input))`. If
3316
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3317
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3318 3319
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3320
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3321
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3322
                       will be named automatically.
G
guosheng 已提交
3323 3324

    Returns:
Y
Yibing Liu 已提交
3325
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3326

G
guosheng 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3337 3338
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3339 3340 3341 3342 3343 3344 3345

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3346 3347 3348
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3349 3350
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3351 3352 3353 3354 3355
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3356
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3357 3358 3359 3360
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3361 3362


C
caoying03 已提交
3363
def reduce_max(input, dim=None, keep_dim=False, name=None):
3364
    """
Y
yangyaming 已提交
3365
    Computes the maximum of tensor elements over the given dimension.
3366 3367 3368

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3369
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3370 3371 3372
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3373
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3374 3375
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3376
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3377 3378
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3379 3380 3381

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3394 3395 3396 3397 3398 3399 3400

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3401 3402 3403
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3404 3405
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3406 3407 3408 3409 3410
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3411
            'dim': dim if dim != None else [0],
3412 3413 3414 3415 3416 3417
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3418
def reduce_min(input, dim=None, keep_dim=False, name=None):
3419
    """
Y
yangyaming 已提交
3420
    Computes the minimum of tensor elements over the given dimension.
3421 3422 3423

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3424
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3425 3426 3427
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3428
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3429 3430
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3431
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3432 3433
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3434 3435 3436

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3437

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3449 3450 3451 3452 3453 3454 3455

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3456 3457 3458
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3459 3460
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3461 3462 3463 3464 3465
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3466
            'dim': dim if dim != None else [0],
3467 3468 3469 3470
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3471 3472


3473 3474 3475 3476 3477 3478
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3479
        dim (list|int|None): The dimensions along which the product is performed. If
3480 3481
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3482 3483
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3484 3485 3486
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3487
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3488
            layer will be named automatically.
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3503
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3504
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3505 3506 3507 3508 3509 3510 3511

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3512 3513 3514
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3515 3516
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3517 3518 3519 3520 3521
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3522
            'dim': dim if dim != None else [0],
3523 3524 3525 3526 3527 3528
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3529
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3530
    """
C
caoying03 已提交
3531
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3532 3533 3534

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3535 3536 3537 3538 3539
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3540
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3541
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3542
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3543 3544
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3545 3546

    Returns:
D
dzhwinter 已提交
3547
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3557 3558
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3597
    .. math::
3598 3599

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3600 3601 3602 3603 3604

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3605
        x(Variable|list): The input tensor to l2_normalize layer.
3606
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3607 3608
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3609
        epsilon(float): The epsilon value is used to avoid division by zero, \
3610
            the defalut value is 1e-10.
3611
        name(str|None): A name for this layer(optional). If set None, the layer \
3612
            will be named automatically.
C
caoying03 已提交
3613 3614

    Returns:
3615
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3616 3617

    Examples:
3618

C
caoying03 已提交
3619 3620
        .. code-block:: python

3621 3622 3623 3624
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3625 3626
    """

F
fengjiayi 已提交
3627 3628
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3629 3630
    helper = LayerHelper("l2_normalize", **locals())

3631 3632
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3633
    helper.append_op(
3634 3635 3636 3637
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3638
        attrs={
3639 3640
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3641 3642
        })
    return out
3643 3644


S
sneaxiy 已提交
3645
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3646
    """
Y
ying 已提交
3647 3648 3649 3650
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3651

C
chengduoZH 已提交
3652
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3653
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3654

3655 3656 3657 3658 3659
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3660
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3661

C
chengduoZH 已提交
3662
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3663
      performs in the following way.
G
guosheng 已提交
3664

3665
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3666
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3667
        last two dimensions and a batched matrix multiply supporting broadcast
3668
        applies on the two tensors.
G
guosheng 已提交
3669

Y
ying 已提交
3670 3671
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3672
    removed after matrix multiplication.
G
guosheng 已提交
3673 3674 3675

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3676 3677 3678
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3679
        alpha (float): The scale of output. Default 1.0.
3680
        name(str|None): A name for this layer(optional). If set None, the layer
3681
            will be named automatically.
G
guosheng 已提交
3682 3683

    Returns:
3684
        Variable: The product Tensor variable.
G
guosheng 已提交
3685

G
guosheng 已提交
3686 3687 3688
    Examples:
        .. code-block:: python

3689
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3690 3691
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3692

3693 3694
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3695

3696 3697
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3698

3699 3700
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3701 3702 3703 3704

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3705 3706
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3707

Y
ying 已提交
3708
            # x: [M], y: [N]
3709
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3710
    """
Y
ying 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3723
            y_shape = y_shape + [1]
Y
ying 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3740
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3741
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3742
    helper.append_op(
3743 3744 3745 3746
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3747 3748 3749
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3750
            'alpha': float(alpha),
S
sneaxiy 已提交
3751
        })
3752
    return out
3753 3754


3755
def topk(input, k, name=None):
Q
qingqing01 已提交
3756 3757 3758 3759
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3760
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3761 3762 3763 3764 3765 3766
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3788 3789 3790
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3791
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3792
                 of input.
3793
        name(str|None): A name for this layer(optional). If set None, the layer
3794
                       will be named automatically.
F
fengjiayi 已提交
3795
                       Default: None
Q
qingqing01 已提交
3796 3797

    Returns:
3798 3799 3800
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3801
        within the last dimension of input.
Q
qingqing01 已提交
3802

F
fengjiayi 已提交
3803 3804
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3825
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3826
    """
Y
ying 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3836

Y
ying 已提交
3837
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3838

3839
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3840 3841
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3842
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3843

3844
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3845 3846
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3847

3848 3849 3850
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3851
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3852
                          the length of reference string.
3853
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3854
                                     calculating edit distance.
3855
        name (str): The name of this layer. It is optional.
3856

W
wanghaoshuang 已提交
3857
    Returns:
W
wanghaoshuang 已提交
3858
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3859 3860 3861 3862 3863

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3864
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3865
            cost = fluid.layers.edit_distance(input=x,label=y)
3866
    """
3867
    helper = LayerHelper("edit_distance", **locals())
3868

3869
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3870
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3871 3872 3873 3874 3875 3876 3877
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3878
            attrs={"tokens": ignored_tokens})
3879 3880 3881 3882 3883
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3884
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3885
            attrs={"tokens": ignored_tokens})
3886 3887
        label = erased_label

3888 3889
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3890
    sequence_num = helper.create_tmp_variable(dtype="int64")
3891 3892 3893 3894
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3895 3896
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3897 3898
        attrs={"normalized": normalized})

3899
    return edit_distance_out, sequence_num
3900 3901 3902 3903 3904


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3905

Y
ying 已提交
3906 3907 3908 3909
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3927
        input.lod = [[4, 4]]
3928 3929 3930 3931 3932 3933 3934

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3935
        output.lod = [[2, 1]]
3936 3937 3938

    Args:

Y
ying 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3948
        name (str): The name of this layer. It is optional.
3949 3950

    Returns:
3951
        Variable: CTC greedy decode result. If all the sequences in result were
3952
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3953 3954 3955 3956 3957

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3958

3959
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3960
    """
3961
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3962
    _, topk_indices = topk(input, k=1)
3963 3964 3965 3966 3967 3968

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3969
        outputs={"Output": [ctc_out]},
3970 3971
        attrs={"merge_repeated": True,
               "blank": blank})
3972
    return ctc_out
3973 3974


F
fengjiayi 已提交
3975
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3976
    """
3977 3978
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3979
    to compute Connectionist Temporal Classification (CTC) loss.
3980 3981
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3982 3983 3984
    input tensor.

    Args:
3985
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3986 3987 3988 3989
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3990
       label (Variable): The ground truth of variable-length sequence,
3991 3992 3993
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3994 3995
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3996 3997 3998
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3999
         follewed by a mean_op.
W
wanghaoshuang 已提交
4000 4001

    Returns:
4002 4003
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4004 4005

    Examples:
4006

W
wanghaoshuang 已提交
4007
        .. code-block:: python
4008

4009 4010 4011
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4012 4013

    """
F
fengjiayi 已提交
4014
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4041 4042 4043
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4044 4045 4046 4047 4048
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4049

4050
            out.lod  = [[0, 1, 3]]
4051 4052 4053 4054

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4055 4056 4057 4058 4059 4060 4061
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4062 4063 4064

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4065 4066

    Returns:
4067

4068 4069 4070 4071 4072
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4073
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4074
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4075 4076 4077 4078 4079 4080 4081 4082 4083
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4084 4085


4086 4087 4088 4089
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4090 4091 4092 4093 4094 4095
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduozh 已提交
4096 4097
        num_neg_samples=None,
        name=None):
4098 4099 4100 4101 4102 4103 4104
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4105 4106
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4107
            sample is 1.0.
C
chengduozh 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4117
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduozh 已提交
4118 4119
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4120

4121
    Returns:
Y
Yibing Liu 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4149
    """
Y
Yang Yu 已提交
4150 4151 4152
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduozh 已提交
4153 4154

    dim = input.shape[1]
Y
Yang Yu 已提交
4155 4156 4157 4158 4159 4160
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduozh 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
Y
Yang Yu 已提交
4174 4175 4176 4177
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4187 4188 4189

    helper.append_op(
        type='nce',
C
chengduozh 已提交
4190
        inputs=inputs,
Y
Yang Yu 已提交
4191 4192 4193 4194 4195 4196
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4197
    return cost / (num_neg_samples + 1)
4198 4199


C
chengduozh 已提交
4200 4201 4202 4203 4204 4205
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4206 4207
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4208
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4218

W
weixing02 已提交
4219
    Args:
M
minqiyang 已提交
4220
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4221 4222 4223 4224 4225
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduozh 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4237 4238 4239 4240 4241 4242 4243 4244

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4245 4246 4247
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4248 4249 4250 4251 4252 4253 4254 4255
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4256
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4257 4258 4259 4260 4261
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4262 4263 4264 4265 4266 4267 4268 4269
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4270 4271
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4272
        inputs=inputs,
W
weixing02 已提交
4273 4274 4275 4276 4277 4278
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4279
def transpose(x, perm, name=None):
Y
ying 已提交
4280 4281 4282 4283 4284 4285 4286
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4287 4288 4289
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4290 4291 4292 4293 4294 4295 4296 4297

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4298
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4299 4300
    """

Y
fix ci.  
ying 已提交
4301
    if len(perm) != len(x.shape):
Y
ying 已提交
4302 4303 4304
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4305 4306 4307 4308 4309 4310
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4311 4312

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4313
    out = helper.create_tmp_variable(x.dtype)
4314
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4315
    helper.append_op(
4316
        type='transpose2',
Y
fix ci.  
ying 已提交
4317
        inputs={'X': [x]},
4318 4319
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4320 4321
        attrs={'axis': perm})
    return out
4322 4323


4324 4325 4326 4327 4328 4329 4330
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4331
    """
4332 4333 4334 4335 4336 4337 4338
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4367 4368 4369 4370 4371 4372 4373 4374 4375
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4376 4377 4378
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4379 4380 4381 4382 4383
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4411 4412 4413
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4426
            output.dims = {8, 8}
4427

4428
            output.lod = [[4, 4]]
4429

D
dzhwinter 已提交
4430
     Examples:
4431 4432 4433

        .. code-block:: python

4434 4435
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4436 4437

    """
W
wanghaoshuang 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4448 4449 4450 4451 4452 4453 4454
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4455
    helper = LayerHelper('im2sequence', **locals())
4456 4457
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4458
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4459
    return out
4460 4461


Y
yuyang18 已提交
4462
@templatedoc()
4463
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4464 4465
    """
    ${comment}
4466 4467

    Args:
Y
yuyang18 已提交
4468
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4469 4470
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4471 4472 4473 4474 4475
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4476
        ${out_comment}.
4477 4478

    Examples:
Y
yuyang18 已提交
4479 4480 4481 4482
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4495
    return helper.append_activation(out)
4496 4497


Y
yuyang18 已提交
4498
@templatedoc()
4499 4500
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4501 4502 4503 4504 4505 4506 4507
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4508 4509

    Args:
Y
yuyang18 已提交
4510 4511
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4512 4513

    Returns:
Y
yuyang18 已提交
4514
        ${out_comment}.
4515 4516
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4517 4518 4519 4520 4521 4522

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4523 4524 4525 4526 4527 4528
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4529 4530


4531 4532 4533 4534
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4535 4536
    """
    **Softmax With Cross Entropy Operator.**
4537

4538 4539 4540 4541
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4542

4543 4544 4545
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4546

4547 4548 4549
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4550

4551
    The equation is as follows:
4552

4553
    1) Hard label (one-hot label, so every sample has exactly one class)
4554

4555 4556 4557 4558
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4559

4560 4561 4562
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4576 4577
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4578 4579
                            if soft_label is set to False. Default: -100

4580 4581 4582 4583 4584 4585 4586 4587 4588
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4589 4590
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4601 4602
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4603 4604 4605 4606 4607
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4608 4609
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4610
    For each instance, it computes the smooth L1 loss element by element first
4611
    and then sums all the losses. So the shape of ouput Variable is
4612
    [batch_size, 1].
4613

4614 4615
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4616
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4617
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4618
            L1 loss op with same shape as :attr:`x`.
4619
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4620 4621
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4622
            by this tensor element by element.
4623
        outside_weight (Variable|None): A tensor with rank at least 2. This
4624 4625
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4626
            element by element.
4627
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4628 4629
           scalar with default value 1.0.

4630
    Returns:
4631
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4632 4633 4634 4635 4636

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4637 4638
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4639
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4640
            out = fluid.layers.smooth_l1(x=fc, y=label)
4641
    """
4642

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4658 4659 4660 4661


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4662
    This layer creates the one-hot representations for input indices.
4663 4664

    Args:
Y
Yibing Liu 已提交
4665 4666
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4667 4668

    Returns:
Y
Yibing Liu 已提交
4669
        Variable: The one-hot representations of input.
4670 4671

    Examples:
C
caoying03 已提交
4672
        .. code-block:: python
4673

Y
Yibing Liu 已提交
4674 4675
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4676 4677 4678 4679 4680 4681 4682 4683 4684
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4685 4686


Y
Yu Yang 已提交
4687
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4688
    """
Y
yi.wu 已提交
4689 4690 4691
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4692 4693 4694 4695 4696 4697

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4698 4699
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4700 4701 4702 4703 4704 4705

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4706 4707
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4708 4709
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4710 4711 4712 4713 4714
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4715
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4716
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4717 4718
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4719 4720
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4721 4722 4723
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4724 4725


4726
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4727
    """
C
caoying03 已提交
4728 4729
    Gives a new shape to the input Tensor without changing its data.

4730 4731 4732 4733 4734
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4735

4736
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4737

4738 4739 4740 4741
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4742
    2. 0 means the actual dimension value is going to be copied from the
4743 4744 4745 4746
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4747 4748

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4749
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4750
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4751

4752
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4753 4754
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4755 4756
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4757
    dimensions.
C
caoying03 已提交
4758

4759
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4760 4761 4762 4763
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4764 4765

    Args:
4766
        x(variable): The input tensor.
C
caoying03 已提交
4767 4768
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4769 4770 4771 4772 4773
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4774
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4775 4776 4777 4778
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4779
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4780

4781 4782
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4783

X
Xin Pan 已提交
4784 4785 4786
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4787 4788
    Examples:
        .. code-block:: python
G
guosheng 已提交
4789

4790
            data = fluid.layers.data(
4791
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4792
            reshaped = fluid.layers.reshape(
4793
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4794 4795 4796
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4797
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4798 4799 4800 4801 4802
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4819
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4820
    out = helper.create_tmp_variable(dtype=x.dtype)
4821
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4822
    helper.append_op(
4823
        type="reshape2",
X
Xin Pan 已提交
4824
        inputs=inputs,
D
dzhwinter 已提交
4825
        attrs={"shape": shape},
4826 4827
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4828

D
dzhwinter 已提交
4829
    return helper.append_activation(out)
4830

4831

4832
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4833
    """
M
minqiyang 已提交
4834 4835 4836
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4837
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4838

Y
Yibing Liu 已提交
4839 4840
    Examples:
    Case 1:
M
minqiyang 已提交
4841
      Given
Y
Yibing Liu 已提交
4842 4843 4844 4845 4846 4847 4848 4849
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4850
        and
Y
Yibing Liu 已提交
4851 4852 4853
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4854

Y
Yibing Liu 已提交
4855
    Args:
4856
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4857
        axes (list): List of integers, indicating the dimensions to be squeezed.
4858
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4859 4860 4861 4862 4863 4864 4865 4866

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4867
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4868 4869
    """
    helper = LayerHelper("squeeze", **locals())
4870
    out = helper.create_tmp_variable(dtype=input.dtype)
4871
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4872
    helper.append_op(
4873
        type="squeeze2",
4874
        inputs={"X": input},
Y
Yibing Liu 已提交
4875
        attrs={"axes": axes},
4876 4877
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4878

4879 4880 4881
    return out


4882
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4883
    """
M
minqiyang 已提交
4884 4885 4886
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4887

M
minqiyang 已提交
4888 4889
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4890
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4891

Y
Yibing Liu 已提交
4892
    Args:
4893
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4894
        axes (list): List of integers, indicating the dimensions to be inserted.
4895
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4896 4897 4898 4899 4900 4901 4902 4903

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4904
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4905 4906
    """
    helper = LayerHelper("unsqueeze", **locals())
4907
    out = helper.create_tmp_variable(dtype=input.dtype)
4908
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4909
    helper.append_op(
4910
        type="unsqueeze2",
4911
        inputs={"X": input},
Y
Yibing Liu 已提交
4912
        attrs={"axes": axes},
4913 4914
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4915

4916 4917
    return out

4918

Y
yangyaming 已提交
4919
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4920
    """
Y
Yibing Liu 已提交
4921
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4922 4923 4924 4925
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4926
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4927 4928 4929 4930 4931 4932

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4933
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4934 4935 4936
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4937
            target_lod: [4, 2]
Y
yangyaming 已提交
4938 4939

            then we get a 1-level LoDTensor:
4940
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4941 4942 4943 4944 4945 4946
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4947
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4948 4949 4950 4951
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4952
                y.data = [[2, 4]]
Y
yangyaming 已提交
4953 4954 4955
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4956
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4957 4958 4959 4960 4961 4962
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4963
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4964 4965 4966 4967
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4968
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4969 4970 4971 4972
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4973
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4974 4975 4976 4977 4978
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4979
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4980
                           from :attr:`y`.
Y
yangyaming 已提交
4981
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4982
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4983 4984

    Returns:
Y
Yibing Liu 已提交
4985
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4986 4987

    Raises:
Y
Yibing Liu 已提交
4988
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5024
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5053 5054
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5082 5083 5084 5085


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5086
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5087
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5088

G
guosheng 已提交
5089 5090 5091 5092
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5115
                         The length of :attr:paddings must be
G
guosheng 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5126

G
guosheng 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5141 5142


C
chengduo 已提交
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5223 5224 5225 5226 5227 5228 5229
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5230 5231
    called label-smoothing regularization (LSR).

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5255
                              be :math:`(1, class\_num)`.
5256 5257
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5258
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5286 5287


Y
yi.wu 已提交
5288
@templatedoc()
5289 5290
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5291
    ${comment}
5292 5293

    Args:
Y
yi.wu 已提交
5294 5295
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5296 5297 5298
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5299 5300

    Returns:
Y
update  
yi.wu 已提交
5301
        Variable: ${out_comment}.
5302 5303

    Examples:
5304 5305
        .. code-block:: python

5306
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5352 5353
        .. code-block:: python

W
whs 已提交
5354 5355 5356 5357
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5358
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5359 5360 5361 5362 5363 5364
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5365 5366


5367 5368 5369 5370 5371
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5372
    """
Q
qiaolongfei 已提交
5373
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5374

5375
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5376 5377 5378
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5379

5380
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5381

5382
    Args:
5383
        input (Variable): The input tensor of image resize layer,
5384 5385
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5386
        out_shape(list|tuple|Variable|None): Output shape of image resize
5387 5388
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5389
        scale(float|None): The multiplier for the input height or width.
5390 5391 5392
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5393 5394
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5395 5396
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5397 5398

    Returns:
Q
update  
qiaolongfei 已提交
5399 5400
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5401

5402 5403 5404
    Examples:
        .. code-block:: python

5405
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5406
    """
5407 5408 5409 5410
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5411 5412
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5413 5414
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5415 5416 5417 5418

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5419 5420 5421
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5422
    if out_shape is not None:
B
baiyf 已提交
5423 5424 5425
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5426 5427 5428 5429 5430 5431
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5432 5433 5434 5435
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5436 5437
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5438
        type=resample_methods[resample],
5439
        inputs=inputs,
5440 5441 5442 5443
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5444 5445


Y
yuyang18 已提交
5446
@templatedoc(op_type="bilinear_interp")
5447 5448
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5449 5450 5451 5452 5453 5454
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5455

Y
yuyang18 已提交
5456 5457 5458 5459 5460 5461 5462 5463
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5464 5465 5466 5467 5468 5469 5470
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5471 5472 5473
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5474 5475 5476 5477 5478 5479 5480
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5481
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5482

5483
    Returns:
Q
update  
qiaolongfei 已提交
5484
        Variable: The output is a 4-D tensor of the shape
5485
        (num_batches, channls, out_h, out_w).
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5496 5497 5498
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5499 5500 5501
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5502 5503
def gather(input, index):
    """
Q
qiaolongfei 已提交
5504 5505
    **Gather Layer**

5506
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5507 5508 5509 5510
    of X indexed by `index` and concatenate them together.

    .. math::

5511
        Out = X[Index]
W
whs 已提交
5512 5513 5514 5515 5516 5517 5518


    .. code-block:: text


                Given:

5519 5520
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5531
        input (Variable): The source input with rank>=1.
W
whs 已提交
5532 5533 5534 5535 5536 5537
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5538

W
whs 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5668

5669 5670 5671
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5672
    """
F
stash  
fengjiayi 已提交
5673
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5674
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5675
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5676
    if seed is None:
5677
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5678
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5679
    if isinstance(seed, int):
F
fengjiayi 已提交
5680 5681 5682 5683 5684
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5685 5686 5687 5688
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5689
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5690 5691
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5692 5693
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5694
    return out
W
whs 已提交
5695 5696


5697
def log(x, name=None):
W
wanghaoshuang 已提交
5698 5699 5700 5701 5702
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5703
        Out = \\ln(x)
W
wanghaoshuang 已提交
5704 5705

    Args:
5706
        x (Variable): Input tensor.
5707 5708
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5709 5710 5711 5712 5713 5714 5715 5716

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5717
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5718 5719
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5720
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5721
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5722
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5723 5724 5725
    return out


5726
def relu(x, name=None):
W
wanghaoshuang 已提交
5727 5728
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5729
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5730 5731 5732 5733
    the tensor elementwise.

    .. math::

5734
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5735 5736

    Args:
5737
        x (Variable): The input tensor.
5738 5739
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5740 5741 5742 5743 5744 5745 5746 5747

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5748
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5749 5750
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5751
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5752
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5753
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5754
    return out
5755 5756


W
whs 已提交
5757 5758 5759
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5760 5761 5762 5763
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5764
    .. math::
5765 5766

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5767

5768
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5769 5770 5771 5772 5773
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5774
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5775
                           Its shape should be the same as input.
5776
        num_classes (int): The possible number of labels.
W
whs 已提交
5777 5778 5779 5780

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5781
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5782 5783 5784 5785

    Examples:

        .. code-block:: python
5786

W
whs 已提交
5787 5788 5789 5790 5791 5792 5793 5794 5795
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5796 5797
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5798
        outputs={
W
whs 已提交
5799 5800 5801
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5802 5803 5804
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5879
                    isinstance(shape, Variable)):
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5913

5914 5915
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5916

5917 5918 5919 5920
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5921

5922 5923 5924 5925 5926
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5927 5928 5929

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5974 5975


W
whs 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5990

W
whs 已提交
5991 5992
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5993

W
whs 已提交
5994
      Case 0:
M
minqiyang 已提交
5995

W
whs 已提交
5996 5997 5998
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5999

W
whs 已提交
6000 6001 6002
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6003

W
whs 已提交
6004
      Case 1:
M
minqiyang 已提交
6005

W
whs 已提交
6006 6007
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6008

W
whs 已提交
6009 6010 6011
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6012

W
whs 已提交
6013
      Case 2:
M
minqiyang 已提交
6014

W
whs 已提交
6015 6016
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6017

W
whs 已提交
6018 6019 6020
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6021 6022


W
whs 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6220
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6221
                        will be named automatically.
J
jerrywgz 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6340

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6351 6352
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6368
        ValueError: If axis is not in range [0, rank(x)].
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6386
    x_shape = helper.create_tmp_variable(x.dtype)
6387
    helper.append_op(
6388
        type='flatten2',
6389
        inputs={"X": x},
6390 6391
        outputs={'Out': out,
                 'XShape': x_shape},
6392 6393
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6394 6395


C
chenweihang 已提交
6396
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6397
    """
C
chenweihang 已提交
6398
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6399
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6400 6401
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6402

C
chenweihang 已提交
6403 6404 6405 6406
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6407
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6408 6409 6410 6411 6412 6413
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6414
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6415 6416 6417
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6418 6419 6420
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6432
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6433 6434 6435 6436 6437 6438
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6439

6440

S
sneaxiy 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6450

S
sneaxiy 已提交
6451
    .. math::
6452

S
sneaxiy 已提交
6453 6454 6455
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6456
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6457 6458 6459 6460
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6461 6462 6463
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6464 6465
    Returns:
        Variable: The output sequence mask.
6466

S
sneaxiy 已提交
6467 6468
    """

Q
qingqing01 已提交
6469
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6470 6471 6472 6473 6474
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6475 6476 6477
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6478 6479
        outputs={'Y': out},
        attrs={
6480
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6481 6482 6483
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6484 6485


X
Xin Pan 已提交
6486
def stack(x, axis=0):
S
sneaxiy 已提交
6487 6488 6489 6490
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6491 6492 6493 6494 6495 6496 6497

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6498
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6499
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6500 6501

    Args:
6502
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6503
        axis (int|None): The axis along which all inputs are stacked.
6504

S
sneaxiy 已提交
6505 6506
    Returns:
        Variable: The stacked variable.
6507

S
sneaxiy 已提交
6508 6509
    """

X
Xin Pan 已提交
6510 6511 6512 6513 6514 6515
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

S
sneaxiy 已提交
6516
    out = helper.create_tmp_variable(dtype=x[0].dtype)
X
Xin Pan 已提交
6517
    helper.append_op(
S
sneaxiy 已提交
6518 6519
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6520

X
Xin Pan 已提交
6521
    return out
D
dzhwinter 已提交
6522 6523 6524 6525 6526 6527 6528


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6529

D
dzhwinter 已提交
6530 6531 6532
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6533
    raised.
D
dzhwinter 已提交
6534 6535

    Args:
M
minqiyang 已提交
6536
        x (Variable): Input variable.
D
dzhwinter 已提交
6537 6538
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6539

D
dzhwinter 已提交
6540 6541
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6542

D
dzhwinter 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
S
sneaxiy 已提交
6553 6554
    for _ in xrange(num):
        outs.append(helper.create_tmp_variable(dtype=x.dtype))
D
dzhwinter 已提交
6555 6556 6557 6558 6559 6560 6561 6562

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6575

W
whs 已提交
6576 6577 6578 6579
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6580

W
whs 已提交
6581
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6582

W
whs 已提交
6583
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6584

W
whs 已提交
6585 6586 6587 6588
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6589

W
whs 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6613 6614 6615 6616 6617


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6618
@templatedoc()
G
fix  
gongweibao 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6628
    ${comment}
G
fix  
gongweibao 已提交
6629 6630

    Args:
G
gongweibao 已提交
6631 6632 6633
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6634
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6635 6636 6637
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6638 6639
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6640
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6662 6663


G
gongweibao 已提交
6664
@templatedoc()
6665
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6666
    """
G
gongweibao 已提交
6667
    ${comment}
G
fix  
gongweibao 已提交
6668 6669

    Args:
G
gongweibao 已提交
6670 6671 6672 6673
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6674 6675 6676
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6677
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
6693
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6694 6695 6696 6697 6698
        })

    return out


G
gongweibao 已提交
6699
@templatedoc()
G
fix  
gongweibao 已提交
6700
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6701
    """
G
gongweibao 已提交
6702
    ${comment}
G
fix  
gongweibao 已提交
6703 6704

    Args:
G
gongweibao 已提交
6705 6706 6707 6708
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6709
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6710 6711

    Returns:
G
gongweibao 已提交
6712
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6713 6714 6715 6716

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6717
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6729
@templatedoc()
G
fix  
gongweibao 已提交
6730 6731 6732 6733 6734 6735 6736 6737 6738
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6739
    ${comment}
G
fix  
gongweibao 已提交
6740 6741

    Args:
G
gongweibao 已提交
6742 6743
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6744
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6745 6746 6747 6748
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6749
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6750 6751

    Returns:
G
gongweibao 已提交
6752
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6775
@templatedoc()
6776
def sum(x):
G
fix  
gongweibao 已提交
6777
    """
G
gongweibao 已提交
6778
    ${comment}
G
fix  
gongweibao 已提交
6779 6780

    Args:
G
gongweibao 已提交
6781
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6782 6783

    Returns:
G
gongweibao 已提交
6784
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6785 6786 6787
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6788
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6789 6790 6791 6792
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
6793
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6794 6795 6796 6797

    return out


G
gongweibao 已提交
6798
@templatedoc()
G
fix  
gongweibao 已提交
6799 6800
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6801
    ${comment}
G
fix  
gongweibao 已提交
6802 6803

    Args:
G
gongweibao 已提交
6804 6805 6806 6807
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6808 6809

    Returns:
G
gongweibao 已提交
6810
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6811 6812 6813 6814

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6815
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6827
@templatedoc()
G
fix  
gongweibao 已提交
6828 6829
def shape(input):
    """
G
gongweibao 已提交
6830
    ${comment}
G
fix  
gongweibao 已提交
6831 6832

    Args:
G
gongweibao 已提交
6833
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6834 6835

    Returns:
G
gongweibao 已提交
6836
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6837 6838 6839 6840

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6841
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6842
    helper.append_op(
G
fix  
gongweibao 已提交
6843
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6844 6845

    return out
G
merge  
gongweibao 已提交
6846 6847


S
sneaxiy 已提交
6848 6849 6850 6851 6852 6853 6854 6855
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6856 6857 6858 6859 6860 6861
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6862

S
sneaxiy 已提交
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6874
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6875 6876 6877 6878 6879 6880 6881 6882
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6883
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6884
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6885 6886 6887 6888 6889 6890

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6891 6892 6893 6894 6895
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6906
    return helper.append_activation(out)
S
sneaxiy 已提交
6907 6908


6909
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6910 6911 6912
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


6913
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6914 6915 6916
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


6917
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6918 6919 6920
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


6921
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6922 6923 6924
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


6925
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6926 6927 6928
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


6929
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6930 6931 6932
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


6933
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6945 6946
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6947
        ])
M
minqiyang 已提交
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out