post_training_quantization.py 76.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
import os
import re
17 18
import math
import shutil
19 20
import logging
import numpy as np
21

22 23 24 25
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
26
from inspect import isgeneratorfunction
27 28 29
from .... import io
from .... import core
from .... import framework
30
from .... import unique_name
31
from ....executor import global_scope, Executor
32 33
from ....framework import IrGraph
from ....log_helper import get_logger
34
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
35
from .cal_kl_threshold import cal_kl_threshold
36
from .adaround import run_adaround
37
from . import utils
38

39 40 41 42
__all__ = [
    'PostTrainingQuantization', 'WeightQuantization',
    'PostTrainingQuantizationProgram'
]
43

44 45 46
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
47 48


49 50 51 52 53 54 55 56
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
97 98
            attr_values
        ), "Different number of pass attributes and their values."
99 100 101 102 103 104 105 106 107
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


108
class PostTrainingQuantization(object):
109 110 111 112 113 114
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

115
    def __init__(self,
116 117
                 executor,
                 model_dir,
118
                 scope=None,
119 120
                 model_filename=None,
                 params_filename=None,
121
                 batch_generator=None,
122
                 sample_generator=None,
123
                 data_loader=None,
124 125 126
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
127
                 hist_percent=0.99999,
128
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
129
                 round_type='round',
130
                 learning_rate=0.001,
131
                 is_full_quantize=False,
X
XGZhang 已提交
132
                 bias_correction=False,
133
                 activation_bits=8,
134 135 136
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
137
                 onnx_format=False,
138
                 freeze_model=True,
139
                 optimize_model=False,
140
                 is_use_cache_file=False,
141
                 skip_tensor_list=None,
142 143 144 145 146
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=False):
147
        '''
148
        Constructor.
149 150

        Args:
151
            executor(fluid.Executor): The executor to load, run and save the
152
                quantized model.
153 154
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
155 156 157 158 159 160 161 162 163
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
164 165 166 167 168 169 170 171
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
172 173 174
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
175 176 177 178
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
179 180 181 182
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
183 184 185 186 187 188 189
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
190 191
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
192
                "mul"].
193
            round_type(str, optional): The method of converting the quantized weights
194
                value float->int. Currently supports ['round', 'adaround'] methods.
195 196
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
197
            learning_rate(float, optional): The learning rate of adaround method.
198
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
199
                apply quantization to all supported quantizable op type. If set
200 201
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
202 203
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
204
            activation_bits(int): quantization bit number for activation.
205 206 207 208 209 210 211 212 213 214 215 216
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
217 218
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
219 220 221 222 223 224
            freeze_model(bool): Whether to convert quantized and trained ``program`` to final 
                quantized ``program``. Default: True.
            skip_tensor_list(list): List of skip quant tensor name. Default: None.
            same_scale_tensor_list(list(list)): The list of tensor keep same scale in the outermost 
                list, the final scale about every list is the max of the scale in the list 
                of tensor. Default: None.
225 226 227 228 229 230 231 232
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
233
            scale_trainable(bool, optional): whether scale can be train.
234 235
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
236 237 238
        Returns:
            None

239 240 241 242 243 244
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
245 246 247 248 249 250 251 252 253
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
254
            # sample generator must return a sample every time. The reference
255 256 257
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
258 259 260
            batch_size = 10
            batch_nums = 10
            algo = "KL"
261
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
262 263
            ptq = PostTrainingQuantization(
                        executor=exe,
264 265 266 267
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
268 269 270 271 272 273 274
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
275

276 277 278 279
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
280
        self._support_algo_type = [
H
handiz 已提交
281
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max', 'ptf'
X
XGZhang 已提交
282
        ]
283
        assert round_type in ['adaround', 'round']
284 285
        self._round_type = round_type
        self._learning_rate = learning_rate
286
        self._dynamic_quantize_op_type = ['lstm']
287
        self._support_quantize_op_type = \
288 289
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
290
                self._dynamic_quantize_op_type))
291 292

        # Check inputs
293
        assert executor is not None, "The executor cannot be None."
294
        assert any([gen is not None] for gen in [sample_generator,
295 296 297 298 299
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
300 301
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
H
handiz 已提交
302
            "The algo should be KL, hist, mse, avg, abs_max, min_max or ptf."
303 304 305 306 307 308 309 310
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
311
        self._bias_correction = bias_correction
312
        self._executor = executor
313
        self._scope = global_scope() if scope == None else scope
314 315 316
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
317
        self._sample_generator = sample_generator
318
        self._batch_generator = batch_generator
319 320 321
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
322
        self._hist_percent = hist_percent
323 324 325 326
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
327
        self._onnx_format = onnx_format
328
        self._skip_tensor_list = skip_tensor_list
329
        self._is_full_quantize = is_full_quantize
330
        if is_full_quantize:
331
            self._quantizable_op_type = self._support_quantize_op_type
332 333 334
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
335
                assert op_type in self._support_quantize_op_type, \
336
                    op_type + " is not supported for quantization."
337
        self._optimize_model = optimize_model
338

339
        # Define variables
340 341 342 343
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
344
        self._data_loader = data_loader
345

346
        self._out_scale_op_list = utils._out_scale_op_list
347 348
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
349
        self._weight_op_pairs = {}
X
XGZhang 已提交
350
        # The vars for alog = KL or hist
351 352
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
353
        self._sampling_data = {}
X
XGZhang 已提交
354
        self._quantized_var_threshold = {}
355 356
        self._histogram_bins = 2048
        # The vars for algo = min_max
357 358
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
359 360 361
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
362
        self._best_calibration_loss = {}
X
XGZhang 已提交
363 364
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
365 366 367 368 369
        self._same_scale_tensor_list = same_scale_tensor_list
        self._freeze_model = freeze_model
        self._scale_trainable = scale_trainable
        self._scale_dict = scale_dict
        self._return_graph = return_graph
370 371 372

    def quantize(self):
        '''
373 374 375
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
376 377 378 379

        Args:
            None
        Returns:
380 381
            the program of quantized model.
        '''
382
        self._load_model_data()
383
        self._collect_target_varnames()
384
        self._set_activation_persistable()
385

X
XGZhang 已提交
386
        if self._algo in ["KL", "hist"]:
387
            batch_id = 0
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
411 412 413 414 415 416
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
417
                self._sampling()
418
                batch_id += 1
419
                t.update()
420 421
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
422

X
XGZhang 已提交
423 424 425 426 427 428
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
429

430
        if self._round_type == 'adaround':
431 432 433 434 435
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
436
            self._save_input_threhold()
437 438 439 440
        else:
            self._update_program()

        # save out_threshold for quantized ops.
441
        self._save_output_threshold()
442

443 444 445 446
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

464 465 466 467 468
        if not self._return_graph:
            return self._program
        else:
            main_graph = IrGraph(core.Graph(self._program.desc), for_test=True)
            return main_graph
469

470
    def _adaround_apply(self):
471
        assert self._algo != "min_max", "The algo should not be min_max."
472 473 474 475
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
476 477 478 479 480 481 482 483 484 485
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
486
                     bias_correction=self._bias_correction,
487
                     lr=self._learning_rate)
488

489 490 491 492
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
493 494 495 496
        '''
        Save the quantized model to the disk.

        Args:
497 498 499 500 501 502 503
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
504
        Returns:
505 506
            None
        '''
507
        clip_extra = True if self._onnx_format else False
508 509 510 511 512 513 514 515
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
516
        _logger.info("The quantized model is saved in " + save_model_path)
517

518
    def _load_model_data(self):
519
        '''
520
        Load model and set data loader.
521
        '''
522 523 524 525 526 527 528
        if self._program is None:
            _logger.info("Load model and set data loader ...")
            [self._program, self._feed_list, self._fetch_list] = \
                io.load_inference_model(dirname=self._model_dir,
                                        executor=self._executor,
                                        model_filename=self._model_filename,
                                        params_filename=self._params_filename)
529 530 531 532

        if self._optimize_model:
            self._optimize_fp32_model()

533 534
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
535 536 537

        if self._data_loader is not None:
            return
538 539 540 541
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
542
        if self._sample_generator is not None:
543 544 545 546
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
547
        elif self._batch_generator is not None:
548 549
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
550

551 552 553 554 555 556 557 558
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
559 560
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
561 562 563 564
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

565 566
        self._program = graph.to_program()

567
    def _collect_target_varnames(self):
568 569 570 571
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
572
        # TODO(juncaipeng), consider the name_scope of skip_quant
573
        _logger.info("Collect quantized variable names ...")
574
        self._quantized_op_pairs = {}
575

576
        def collect_var_name(var_name_list, persistable_var_names, op_type):
577 578 579
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
580
                    self._weight_op_pairs[var_name] = op_type
581 582 583
                else:
                    self._quantized_act_var_name.add(var_name)

584
        persistable_var_names = _all_persistable_var_names(self._program)
585 586
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
587 588 589 590 591 592
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

593 594 595 596 597 598 599
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
600 601 602 603
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
604
                    # collect quanted op output var name
605 606
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
607 608 609
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
610 611
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
612 613
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
614 615 616 617 618 619

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
620 621 622 623
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

624 625 626 627
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
628
        to_erase = []
629 630 631
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
632
                to_erase.append(var.name)
633

634
    def _sampling(self):
635
        '''
636
        Sample the min/max, abs_max or histogram in every iterations.
637 638
        '''
        if self._algo == "abs_max":
639
            self._sample_abs_max()
X
XGZhang 已提交
640 641
        elif self._algo == "avg":
            self._sample_avg()
642
        elif self._algo == "min_max":
643
            self._sample_min_max()
X
XGZhang 已提交
644 645
        elif self._algo == "mse":
            self._sample_mse()
646 647
        elif self._algo == "emd":
            self._sample_emd()
H
handiz 已提交
648 649
        elif self._algo == "ptf":
            self._sample_ptf()
X
XGZhang 已提交
650
        elif self._algo in ["KL", "hist"]:
651
            self._sample_histogram()
652

X
XGZhang 已提交
653 654 655
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
656
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
657 658 659 660 661
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
662
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
663 664 665 666 667 668 669 670 671 672
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
673
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
674 675
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
676
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
677
            s = 0.3
678 679
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
680 681 682 683
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
684
                if self._onnx_format:
685
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
686 687 688 689 690 691
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
X
XGZhang 已提交
692
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
693 694 695 696 697 698 699
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
700
                var_tensor = utils.load_variable_data(self._scope, var_name)
701 702 703 704 705
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
706
                            var_name] in utils._channelwise_quant_axis1_ops:
707 708 709 710 711 712 713 714 715 716
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
717
            var_tensor = utils.load_variable_data(self._scope, var_name)
718 719 720 721 722 723 724 725 726 727
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
728
                if self._onnx_format:
729
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
730 731 732 733 734 735
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
736 737 738 739 740
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
741 742 743 744 745
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
746
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
747 748 749 750 751
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
752
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
753 754 755 756 757 758 759 760 761 762
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
763
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
764 765 766 767 768 769 770 771
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

772
    def _sample_abs_max(self):
X
XGZhang 已提交
773
        if self._quantized_threshold == {}:
774
            for var_name in self._quantized_weight_var_name:
775
                var_tensor = utils.load_variable_data(self._scope, var_name)
776 777 778 779
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
780
                    if self._weight_op_pairs[
781
                            var_name] in utils._channelwise_quant_axis1_ops:
782 783 784 785 786 787 788
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
789
                self._quantized_threshold[var_name] = abs_max_value
790 791

        for var_name in self._quantized_act_var_name:
792
            var_tensor = utils.load_variable_data(self._scope, var_name)
793
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
794 795 796
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
797

798
    def _sample_min_max(self):
799 800
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
801
                var_tensor = utils.load_variable_data(self._scope, var_name)
802 803 804 805 806 807
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
808
                    if self._weight_op_pairs[
809
                            var_name] in utils._channelwise_quant_axis1_ops:
810 811 812 813 814 815 816 817 818 819 820
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
821
            var_tensor = utils.load_variable_data(self._scope, var_name)
822 823 824 825 826 827 828 829
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
830

831 832
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
833
            var_tensor = utils.load_variable_data(self._scope, var_name)
834 835 836 837 838
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

H
handiz 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    def l2_loss(self, gt, pred):
        return ((gt - pred)**2).mean()

    def _sample_ptf(self):
        """
        The following code are modified from:
        https://github.com/megvii-research/FQ-ViT/
        """
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = utils.load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in utils._channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = utils.load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            q_max = 2**(self._activation_bits - 1) - 1
            scale8 = abs_max_value / q_max
            scale4 = scale8 / 2
            scale2 = scale4 / 2
            scale1 = scale2 / 2
            quant_dequant_var_scale1 = np.clip(np.round(var_tensor / scale1), 0,
                                               q_max) * scale1
            quant_dequant_var_scale2 = np.clip(np.round(var_tensor / scale2), 0,
                                               q_max) * scale2
            quant_dequant_var_scale4 = np.clip(np.round(var_tensor / scale4), 0,
                                               q_max) * scale4
            quant_dequant_var_scale8 = np.clip(np.round(var_tensor / scale8), 0,
                                               q_max) * scale8
            score1 = self.l2_loss(var_tensor, quant_dequant_var_scale1)
            score2 = self.l2_loss(var_tensor, quant_dequant_var_scale2)
            score4 = self.l2_loss(var_tensor, quant_dequant_var_scale4)
            score8 = self.l2_loss(var_tensor, quant_dequant_var_scale8)
            score = [score1, score2, score4, score8]
            mask = 2**score.index(min(score))
            scale = scale1 * mask
            threshold = q_max * scale
            self._quantized_threshold[var_name] = threshold

891 892 893 894 895 896
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
897 898 899
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
900
                    for var_name in utils._get_op_input_var_names(op):
901 902 903 904 905 906 907
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
908

909
    def _collect_activation_abs_min_max(self):
910
        '''
911 912
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
913
        '''
914
        for var_name in self._quantized_act_var_name:
915
            var_tensor = utils.load_variable_data(self._scope, var_name)
916 917 918 919
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
920 921 922
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
923 924 925 926 927 928 929 930 931 932 933 934 935 936
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
937 938 939
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
940
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
941

X
XGZhang 已提交
942
    def _calculate_kl_hist_threshold(self):
943
        '''
X
XGZhang 已提交
944
        Calculate the KL or hist threshold of quantized variables.
945
        '''
X
XGZhang 已提交
946 947
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
948 949

        # Abs_max threshold for weights
950
        for var_name in self._quantized_weight_var_name:
951
            weight_data = utils.load_variable_data(self._scope, var_name)
952
            if self._weight_quantize_type == "abs_max":
953
                weight_threshold = float(np.max(np.abs(weight_data)))
954 955
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
956
                if self._weight_op_pairs[
957
                        var_name] in utils._channelwise_quant_axis1_ops:
958 959 960 961 962 963 964
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
965
            self._quantized_var_threshold[var_name] = weight_threshold
966

967 968
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
969
            if self._algo == "KL":
970
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
971
                self._quantized_var_threshold[var_name] = \
972
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
973 974 975
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
976 977 978

    def _update_program(self):
        '''
979 980
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
981
        Besides, save all threshold to the scale var node.
982
        '''
983
        _logger.info("Update the program ...")
984 985
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

986
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
987
        major_quantizable_op_types = []
988
        for op_type in utils._weight_supported_quantizable_op_type:
989
            if op_type in self._quantizable_op_type:
990
                major_quantizable_op_types.append(op_type)
991 992 993 994 995 996 997 998
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
999 1000
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1001 1002 1003 1004 1005 1006 1007 1008
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
1009 1010
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1011 1012 1013 1014 1015 1016

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
1017 1018

        # use AddQuantDequantPass to insert fake_quant_dequant op
1019
        minor_quantizable_op_types = []
1020
        for op_type in utils._act_supported_quantizable_op_type:
1021
            if op_type in self._quantizable_op_type:
1022
                minor_quantizable_op_types.append(op_type)
1023 1024 1025 1026
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
1027 1028
                quantizable_op_type=minor_quantizable_op_types,
                is_test=not self._scale_trainable)
1029 1030 1031 1032 1033
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
1034 1035
                is_full_quantized=self._is_full_quantize,
                is_test=not self._scale_trainable)
1036 1037 1038 1039

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
1040

X
XGZhang 已提交
1041
        # save threshold to scale var node
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        if self._scale_dict is None:
            if self._algo in ["KL", "hist"]:
                scale_dict = self._quantized_var_threshold
            else:
                scale_dict = self._quantized_threshold

            if self._same_scale_tensor_list is not None:
                for tensor_list in self._same_scale_tensor_list:
                    max_scale = None
                    tmp_tensor_list = []
                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) * float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) / float(
                                        scalar)
                            max_scale = scale_dict[
                                real_tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[real_tensor_name])
                        else:
                            max_scale = scale_dict[
                                tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[tensor_name])

                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[
                                    real_tensor_name] = max_scale / float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[
                                    real_tensor_name] = max_scale * float(
                                        scalar)
                        else:
                            scale_dict[tensor_name] = max_scale
            self._scale_dict = scale_dict

        for key, val in self._scale_dict.items():
H
handiz 已提交
1089
            utils.set_variable_data(self._scope, self._place, key + "@scale",
1090 1091
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
H
handiz 已提交
1092
                                    key + ".quant_dequant@scale",
1093
                                    np.array([val], dtype=np.float32))
1094

1095 1096
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            if self._freeze_model:
                freeze_pass = QuantizationFreezePass(
                    scope=self._scope,
                    place=self._place,
                    bias_correction=self._bias_correction,
                    weight_bits=self._weight_bits,
                    round_type=self._round_type,
                    activation_bits=self._activation_bits,
                    weight_quantize_type=self._weight_quantize_type,
                    quantizable_op_type=major_quantizable_op_types)

                for sub_graph in graph.all_sub_graphs():
                    sub_graph._for_test = True
                    freeze_pass.apply(sub_graph)
1111 1112 1113 1114 1115
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
1116

1117 1118
        self._program = graph.to_program()

1119
    def _save_output_threshold(self):
1120
        '''
1121
        Save output threshold to the quantized op.
1122
        '''
1123
        self._calibration_scales = {}
1124 1125 1126 1127 1128 1129

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            if self._onnx_format:
                # For easy extension, every var_node set a dict to save parameters of quant.
                self._calibration_scales[var_name] = {}
                self._calibration_scales[var_name]['scale'] = threshold_map[
                    var_name]
            else:
                op_node._set_attr(out_info_name, threshold_map[var_name])
                op_node._set_attr("with_quant_attr", True)
                if op_node.type in self._quantizable_op_type:
                    op._set_attr("quantization_type", quantized_type)
1140 1141

        def analysis_and_save_info(op_node, out_var_name):
1142
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1143 1144
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1145
            if self._algo == "KL":
1146
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1147 1148
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1149
                save_info(
X
XGZhang 已提交
1150
                    op_node, out_var_name, self._quantized_var_threshold,
1151 1152
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1153 1154 1155 1156
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1157
                save_info(
X
XGZhang 已提交
1158
                    op_node, out_var_name, self._quantized_var_threshold,
1159
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1160 1161
                    "post_hist")

H
handiz 已提交
1162
            elif self._algo in ["avg", "abs_max", "mse", "emd", "ptf"]:
X
XGZhang 已提交
1163 1164 1165 1166 1167 1168
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1169 1170 1171 1172 1173 1174
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1175 1176
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1177 1178
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1179
                    out_var_names = utils._get_op_output_var_names(op)
1180 1181
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1202
            for var_name in utils._get_op_input_var_names(op):
1203
                if var_name in persistable_var_names:
1204
                    var_data = utils.load_variable_data(self._scope, var_name)
1205
                    threshold = float(np.max(np.abs(var_data)))
1206
                    argname, index = utils._get_input_name_index(op, var_name)
1207 1208 1209
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1210
                    op._set_attr("with_quant_attr", True)
1211

X
XGZhang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
class PostTrainingQuantizationProgram(PostTrainingQuantization):

    def __init__(self,
                 executor,
                 program,
                 feed_list=None,
                 fetch_list=None,
                 scope=None,
                 batch_generator=None,
                 sample_generator=None,
                 data_loader=None,
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
                 hist_percent=0.99999,
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
                 round_type='round',
                 learning_rate=0.001,
                 is_full_quantize=False,
                 bias_correction=False,
                 activation_bits=8,
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
                 onnx_format=False,
                 freeze_model=True,
                 optimize_model=False,
                 is_use_cache_file=False,
                 skip_tensor_list=None,
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=True):
        super().__init__(executor, scope, None, None, None, batch_generator,
                         sample_generator, data_loader, batch_size, batch_nums,
                         algo, hist_percent, quantizable_op_type, round_type,
                         learning_rate, is_full_quantize, bias_correction,
                         activation_bits, weight_bits, activation_quantize_type,
                         weight_quantize_type, onnx_format, freeze_model,
                         optimize_model, is_use_cache_file, skip_tensor_list,
                         same_scale_tensor_list, scale_trainable, cache_dir,
                         scale_dict, return_graph)
        self._program = program
        assert feed_list is not None, \
            "Feed list should not be None."
        assert fetch_list is not None, \
            "Fetch list should not be None."
        self._feed_list = feed_list
        self._fetch_list = fetch_list


1281 1282
class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1283
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1310
                               weight_bits=8,
1311 1312
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1332 1333
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1334 1335 1336 1337 1338 1339 1340
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1341 1342 1343 1344 1345 1346 1347 1348 1349
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1350
                "Input error:" + op_type + \
1351
                " is not supported for weight quantization."
1352
        assert weight_bits in [8, 16], \
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1366 1367 1368 1369 1370
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1430 1431 1432 1433 1434 1435 1436 1437 1438
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1450 1451 1452 1453 1454 1455 1456 1457
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1458 1459 1460 1461 1462 1463 1464 1465 1466
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1486

1487 1488 1489 1490 1491 1492 1493
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1504
        weight_data = utils.load_variable_data(scope, var_name)
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1518 1519
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1520 1521 1522
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1523 1524
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1525 1526 1527 1528 1529

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1530
        op._set_attr("with_quant_attr", True)
1531

1532 1533 1534
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1535 1536 1537 1538 1539 1540 1541
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1542
        weight_data = utils.load_variable_data(scope, var_name)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1556 1557
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1568 1569
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1570 1571 1572 1573 1574

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1575
        op._set_attr("with_quant_attr", True)
1576 1577 1578 1579 1580 1581 1582 1583

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1584 1585
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1598 1599
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1612 1613
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1626 1627
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1628 1629 1630 1631 1632
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1633 1634
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1635 1636 1637
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width