target_assign_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
15
#include "paddle/fluid/operators/detection/target_assign_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class TargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TargetAssignOp should not be null");
27 28
    PADDLE_ENFORCE(ctx->HasInput("MatchIndices"),
                   "Input(MatchIndices) of TargetAssignOp should not be null");
29 30 31 32 33 34 35

    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TargetAssignOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutWeight"),
                   "Output(OutWeight) of TargetAssignOp should not be null.");

    auto in_dims = ctx->GetInputDim("X");
36 37
    auto mi_dims = ctx->GetInputDim("MatchIndices");

38 39
    PADDLE_ENFORCE_EQ(in_dims.size(), 3, "The rank of Input(X) must be 3.");
    PADDLE_ENFORCE_EQ(mi_dims.size(), 2,
40
                      "The rank of Input(MatchIndices) must be 2.");
41 42 43 44 45 46 47 48

    if (ctx->HasInput("NegIndices")) {
      auto neg_dims = ctx->GetInputDim("NegIndices");
      PADDLE_ENFORCE_EQ(neg_dims.size(), 2,
                        "The rank of Input(NegIndices) must be 2.");
      PADDLE_ENFORCE_EQ(neg_dims[1], 1,
                        "The last dimenstion of Out(NegIndices) must be 1.");
    }
49 50

    auto n = mi_dims[0];
51 52 53 54
    auto m = mi_dims[1];
    auto k = in_dims[in_dims.size() - 1];
    ctx->SetOutputDim("Out", {n, m, k});
    ctx->SetOutputDim("OutWeight", {n, m, 1});
55 56 57 58 59
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
60 61
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
62 63 64 65 66
  }
};

class TargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
67
  void Make() override {
68 69 70 71
    AddInput("X",
             "(LoDTensor), This input is a 3D LoDTensor with shape [M, P, K]. "
             "Some elements in X will be assigned to Out based on the "
             "MatchIndices and NegIndices.");
72
    AddInput("MatchIndices",
D
dangqingqing 已提交
73
             "(Tensor, default Tensor<int>), The input matched indices "
74 75
             "with shape [N, P], If MatchIndices[i][j] is -1, the j-th entity "
             "of column is not matched to any entity of row in i-th instance.");
76 77
    AddInput("NegIndices",
             "(LoDTensor, default LoDTensor<int>), The input negative example "
78 79 80 81 82 83
             "indices are an optional input with shape [Neg, 1], where Neg is "
             "the total number of negative example indices.")
        .AsDispensable();
    AddAttr<int>("mismatch_value",
                 "(int, default 0), Fill this value to the "
                 "mismatched location.")
84
        .SetDefault(0);
85 86 87 88 89 90 91
    AddOutput("Out",
              "(Tensor), The output is a 3D Tensor with shape [N, P, K], "
              "N and P is the same as they are in NegIndices, K is the "
              "same as it in input of X. If MatchIndices[i][j] "
              "is -1, the Out[i][j][0 : K] is the mismatch_value.");
    AddOutput("OutWeight",
              "(Tensor), The weight for output with the shape of [N, P, 1]");
92
    AddComment(R"DOC(
93 94 95 96 97 98 99 100 101
This operator can be, for given the target bounding boxes or labels,
to assign classification and regression targets to each prediction as well as
weights to prediction. The weights is used to specify which prediction would
not contribute to training loss.

For each instance, the output `Out` and`OutWeight` are assigned based on
`MatchIndices` and `NegIndices`.
Assumed that the row offset for each instance in `X` is called lod,
this operator assigns classification/regression targets by performing the
D
dangqingqing 已提交
102 103 104 105 106 107
following steps:

1. Assigning all outpts based on `MatchIndices`:

If id = MatchIndices[i][j] > 0,

108 109
    Out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
    OutWeight[i][j] = 1.
D
dangqingqing 已提交
110 111 112

Otherwise, 

113 114
    Out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][j] = 0.
D
dangqingqing 已提交
115

116
2. Assigning OutWeight based on `NegIndices` if `NegIndices` is provided:
D
dangqingqing 已提交
117

118 119
Assumed that the row offset for each instance in `NegIndices` is called neg_lod,
for i-th instance and each `id` of NegIndices in this instance:
D
dangqingqing 已提交
120

121 122
    Out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][id] = 1.0
123 124 125 126 127

    )DOC");
  }
};

128 129
template <typename T, typename WT>
struct NegTargetAssignFunctor<platform::CPUDeviceContext, T, WT> {
130
  void operator()(const platform::CPUDeviceContext& ctx, const int* neg_indices,
131 132 133
                  const size_t* lod, const int N, const int M, const int K,
                  const int mismatch_value, T* out, WT* out_wt) {
    for (int i = 0; i < N; ++i) {
D
dangqingqing 已提交
134
      for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
135
        int id = neg_indices[j];
136 137 138 139 140
        int off = (i * M + id) * K;
        for (int k = 0; k < K; ++k) {
          out[off + k] = mismatch_value;
          out_wt[off + k] = static_cast<WT>(1.0);
        }
141 142 143 144 145
      }
    }
  }
};

146 147 148
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, int, float>;
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, float,
                                       float>;
149 150 151 152 153

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
154 155
REGISTER_OPERATOR(target_assign, ops::TargetAssignOp, ops::TargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
156 157
REGISTER_OP_CPU_KERNEL(
    target_assign,
158 159
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, int, float>,
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, float, float>);