creation.py 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60
	:alias_main: paddle.full_like
61
	:alias: paddle.tensor.full_like, paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

63 64
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
65

P
Pei Yang 已提交
66
    Args:
67 68
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
69 70 71
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
72 73
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
74
    Returns:
75
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
76
    
77
    Raises:
78 79
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
80
    
P
Pei Yang 已提交
81 82
    Examples:
        .. code-block:: python
83

P
Pei Yang 已提交
84 85
          import paddle
          import numpy as np
86 87 88
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
89
          output = paddle.full_like(input, 2.0)
90 91
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
92 93 94
    """

    if dtype is None:
95
        dtype = x.dtype
96
    else:
97 98 99 100 101
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
102

103
    helper = LayerHelper("full_like", **locals())
104 105 106
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
107 108
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
109
                'full_like/zeros_like/ones_like')
110
    out = helper.create_variable_for_type_inference(dtype=dtype)
111

P
Pei Yang 已提交
112 113
    helper.append_op(
        type='fill_any_like',
114
        inputs={'X': [x]},
115
        attrs={'value': fill_value,
116
               "dtype": dtype},
P
Pei Yang 已提交
117
        outputs={'Out': [out]})
118
    out.stop_gradient = True
P
Pei Yang 已提交
119 120 121
    return out


122
def ones(shape, dtype=None, name=None):
123
    """
124
	:alias_main: paddle.ones
125
	:alias: paddle.tensor.ones, paddle.tensor.creation.ones
S
swtkiwi 已提交
126

127 128 129
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
130 131
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output Tensor, it supports
132 133 134
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
135
    Returns:
136
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
137

138
    Raises:
139
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None
140
            and the data type of out Tensor must be the same as the dtype. 
141 142
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
143
    
144 145 146
    Examples:
        .. code-block:: python

147 148 149
          import paddle 
          paddle.enable_imperative()
          
150
          # default dtype for ones OP
151 152 153 154 155 156 157 158 159
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
160
          # shape is a Tensor
161 162 163 164
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
165
    """
166 167 168
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
169 170


171
def ones_like(x, dtype=None, name=None):
172
    """
173
	:alias_main: paddle.ones_like
174
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
175

176 177
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
178 179

    Args:
180 181 182 183 184 185 186 187 188 189
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

190
    Returns:
191 192 193 194 195 196
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
197 198 199 200

    Examples:
        .. code-block:: python

201 202
        import paddle
        import numpy as np
203

204
        paddle.enable_imperative()
205

206 207 208
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1., 1., 1.]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
209

210 211
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
212 213


214
def zeros(shape, dtype=None, name=None):
215
    """
216
	:alias_main: paddle.zeros
217
	:alias: paddle.tensor.zeros, paddle.tensor.creation.zeros
S
swtkiwi 已提交
218

219 220 221
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
222 223
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output Tensor, it supports
224 225 226
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
227 228

    Returns:
229
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
230

231 232 233 234 235 236
    Raises:
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None
            and the data type of out Tensor must be the same as the dtype. 
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
    
237 238 239 240
    Examples:
        .. code-block:: python

          import paddle
241 242
          
          paddle.enable_imperative()  # Now we are in imperative mode
243 244 245 246 247 248 249 250 251 252 253 254 255
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[0 0]
          #  [0 0]]
256
    """
257 258 259
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
260 261


262
def zeros_like(x, dtype=None, name=None):
263
    """
264
	:alias_main: paddle.zeros_like
265
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
266

267 268
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
269 270

    Args:
271 272 273 274 275 276
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
277 278 279
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
280 281

    Returns:
282 283
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
284

285
    Raise:
286 287
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
288

289 290 291
    Examples:
        .. code-block:: python

292 293
        import paddle
        import numpy as np
294

295
        paddle.enable_imperative()
296

297
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
298 299
        out1 = paddle.zeros_like(x) # [0., 0., 0.]
        out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
300

301 302
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
303 304


305
def eye(num_rows, num_columns=None, dtype=None, name=None):
306
    """
307 308 309
	:alias_main: paddle.eye
	:alias: paddle.tensor.eye, paddle.tensor.creation.eye
    
310
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
311

312
    Args:
313 314
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
315
            If None, default: num_rows.
316
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned Tensor.
317 318
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
319 320
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
321

322
    Returns:
323
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
324 325
    
    Raises:
326 327
        TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The ``num_columns`` must be non-negative int.
328

329 330
    Examples:
        .. code-block:: python
331
          
332
          import paddle
333 334

          paddle.enable_imperative()  # Now we are in imperative mode
335
          data = paddle.eye(3, dtype='int32')
336 337 338
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
339
          data = paddle.eye(2, 3, dtype='int32')
340 341
          # [[1 0 0]
          #  [0 1 0]]
342 343
    """

344 345 346
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
347
        num_columns = num_rows
348 349 350 351 352
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
353 354


355
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
356
    """
357
	:alias_main: paddle.full
358
	:alias: paddle.tensor.full, paddle.tensor.creation.full
S
swtkiwi 已提交
359

360
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
361 362
    
    Args:
363
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
364 365
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
366 367 368 369
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
370
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
371
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
372 373 374
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
375
    Returns:
376
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
377 378

    Raises:
379 380 381
        TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must
            be int32 or int64 when the it's a Tensor
382
    
W
wangchaochaohu 已提交
383 384 385
    Examples:
        .. code-block:: python

386
          import paddle
W
wangchaochaohu 已提交
387

388
          paddle.enable_imperative()  # Now we are in imperative mode
389 390 391
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
392

393
          # attr shape is a list which contains Tensor.
394
          positive_2 = paddle.fill_constant([1], "int32", 2)
395 396
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
397

398
          # attr shape is a Tensor.
399 400 401 402
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
403
          
404
          # attr fill_value is a Tensor.
405 406 407 408
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
409 410 411 412 413
    """

    if dtype is None:
        dtype = 'float32'

414
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
415 416


417
def arange(start=0, end=None, step=1, dtype=None, name=None):
418
    """
419
	:alias_main: paddle.arange
420
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
421

422
    This OP returns a 1-D Tensor with spaced values within a given interval.
423

424 425
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
426

427 428
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
429 430

    Parameters:
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
449

450 451 452 453
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
454

455
    Raises:
456
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
457

458 459 460 461
    examples:

        .. code-block:: python

462 463
        import paddle
        import numpy as np
464

465
        paddle.enable_imperative()
466

467 468
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
469

470 471
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
472

473 474 475
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
476

477 478 479 480 481 482 483 484 485 486
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
487

488
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
528 529
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
530

W
WuHaobo 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

595 596 597 598
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
599 600 601 602 603 604

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
605 606
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
607

W
WuHaobo 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
673 674 675
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
676 677

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
678 679


680
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
681
    """
682 683
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
684

685
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
686 687 688
    vector, and creates N-dimensional grids.
    
    Args:
689
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
690
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
691 692
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
712
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
727 728
          
          paddle.enable_imperative()
S
suytingwan 已提交
729 730 731

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
732 733 734
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
735 736 737 738 739 740

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

741 742
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
743
    if in_dygraph_mode():
744 745
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
746 747
        return out

748
    name = kwargs.get("name", None)
S
suytingwan 已提交
749 750
    helper = LayerHelper('meshgrid', **locals())

751 752
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
753

754
    for id, input_ in enumerate(args):
S
suytingwan 已提交
755 756 757 758
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

759
    num = len(args)
S
suytingwan 已提交
760
    out = [
761
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
762 763
        for i in range(num)
    ]
764 765
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
766 767

    return out