test_compare_reduce_op.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import op_test
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


def create_test_broadcast_class(op_type, args, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            x = np.random.random(size=args['x_size']).astype('int32')
            y = np.random.random(size=args['y_size']).astype('int32')
            z = callback(x, y)
            self.inputs = {'X': x, 'Y': y}
            self.outputs = {'Out': z}
            self.op_type = op_type
            self.axis = args['axis']

        def test_output(self):
            self.check_output()

    cls_name = "{0}_{1}".format(op_type, 'broadcast')
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


def create_test_not_equal_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            x = np.random.random(size=(10, 7)).astype(typename)
            y = np.random.random(size=(10, 7)).astype(typename)
            z = callback(x, y)
            self.inputs = {'X': x, 'Y': y}
            self.outputs = {'Out': z}
            self.op_type = op_type

        def test_output(self):
            self.check_output()

    cls_name = "{0}_{1}_{2}".format(op_type, typename, 'not_equal')
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


def create_test_equal_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            x = y = np.random.random(size=(10, 7)).astype(typename)
            z = callback(x, y)
            self.inputs = {'X': x, 'Y': y}
            self.outputs = {'Out': z}
            self.op_type = op_type

        def test_output(self):
            self.check_output()

    cls_name = "{0}_{1}_{2}".format(op_type, typename, 'equal')
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


def create_test_dim1_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            x = y = np.random.random(size=(1)).astype(typename)
            z = callback(x, y)
            self.inputs = {'X': x, 'Y': y}
            self.outputs = {'Out': z}
            self.op_type = op_type

        def test_output(self):
            self.check_output()

    cls_name = "{0}_{1}_{2}".format(op_type, typename, 'equal')
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


np_equal = lambda _x, _y: np.array(np.array_equal(_x, _y))

for _type_name in {'float32', 'float64', 'int32', 'int64'}:
    create_test_not_equal_class('equal_reduce', _type_name, np_equal)
    create_test_equal_class('equal_reduce', _type_name, np_equal)
    create_test_dim1_class('equal_reduce', _type_name, np_equal)

broadcast_args = [{
    'x_size': (100, 2, 3),
    'y_size': (100),
    'axis': 0
}, {
    'x_size': (2, 100, 3),
    'y_size': (100),
    'axis': 1
}, {
    'x_size': (2, 3, 100),
    'y_size': (1, 1),
    'axis': -1
}, {
    'x_size': (2, 10, 12, 3),
    'y_size': (10, 12),
    'axis': 1
}, {
    'x_size': (100, 2, 3, 4),
    'y_size': (100, 1),
    'axis': 0
}, {
    'x_size': (10, 3, 12),
    'y_size': (10, 1, 12),
    'axis': -1
}, {
    'x_size': (2, 12, 3, 5),
    'y_size': (2, 12, 1, 5),
    'axis': -1
}, {
    'x_size': (2, 12, 3, 5),
    'y_size': (3, 5),
    'axis': 2
}]


def np_broadcast_equal(_x, _y):
    res = np.all(np.equal(_x, _y))
    return np.array(res)


for args in broadcast_args:
    create_test_broadcast_class('equal_reduce', args, np_broadcast_equal)


class TestEqualReduceAPI(unittest.TestCase):
    def test_name(self):
        x = fluid.layers.assign(np.array([3, 4], dtype="int32"))
        y = fluid.layers.assign(np.array([3, 4], dtype="int32"))
        out = paddle.equal(x, y, name='equal_res')
        assert 'equal_res' in out.name


if __name__ == '__main__':
    unittest.main()