collective.py 64.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17
from datetime import timedelta
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable
20
from ..fluid.framework import in_dygraph_mode
21
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
22
from ..fluid.framework import _non_static_mode
23
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
24
from ..fluid.framework import _varbase_creator
25 26 27 28
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
29 30
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
31
from ..fluid.dygraph import layers
32 33 34 35
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
36
from paddle import _C_ops
J
Jiangxinz 已提交
37
import paddle.fluid.dygraph_utils as dygraph_utils
38

39
__all__ = []
40 41 42


class ReduceOp:
L
lilong12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
74 75 76 77
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
78
    AVG = 4
79 80


K
kuizhiqing 已提交
81 82 83 84
class Group():
    """
    The abstract representation of group.
    """
85

86
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
87 88
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
89 90
        self.id = id
        self.ranks = ranks
91 92
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

107 108 109 110
    @property
    def process_group(self):
        return self.pg

111 112 113 114
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
115 116
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
117 118
        return debug_str

K
kuizhiqing 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

134 135 136 137 138 139 140 141 142 143 144
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

_valid_backend_list = ['nccl', 'gloo', 'hccl']
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
145

L
lilong12 已提交
146 147 148 149 150 151 152 153 154 155
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
156 157 158 159
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
160 161
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
162 163 164 165 166 167 168
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


169 170 171 172 173 174
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
175
    global _group_map_by_name
176 177 178 179 180 181
    assert _default_group_name in _group_map_by_name, (
        "Call paddle.distributed.init_parallel_env first "
        "to initialize the distributed environment.")
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
182 183 184 185 186 187 188 189 190 191 192 193
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


K
kuizhiqing 已提交
194 195 196 197 198 199 200 201 202 203
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
204
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
219
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
220 221


222 223 224 225 226 227 228
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
                            group_id=0):
229
    pg = None
L
lilong12 已提交
230
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
231
    if backend == "gloo":
232
        pg = core.ProcessGroupGloo(store, rank, world_size, group_id)
233
    elif backend == "nccl":
234
        pg = core.ProcessGroupNCCL(store, rank, world_size, group_id)
235
    elif backend == "hccl":
236
        pg = core.ProcessGroupHCCL(store, rank, world_size, group_id)
237 238 239 240

    return pg


S
ShenLiang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
265
    if in_dygraph_mode():
266 267 268 269 270
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
271 272 273
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
274
    if _non_static_mode():
W
wanghuancoder 已提交
275
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
276 277 278

    op_type = 'barrier'

S
ShenLiang 已提交
279 280 281 282 283 284 285 286 287 288
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
289 290 291
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
292
    Creates a new distributed communication group.
K
kuizhiqing 已提交
293 294

    Args:
K
kuizhiqing 已提交
295
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
296 297 298
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
299
        Group: The group instance.
K
kuizhiqing 已提交
300 301 302 303 304 305 306

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
307 308 309
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
310 311

    """
312
    global _group_map
L
lilong12 已提交
313
    if in_dygraph_mode():
314 315 316 317 318 319
        global _default_group_name
        gid = _new_ring_id()
        group_name = _default_group_name + str(gid)
        global_group = _get_default_group()
        global_rank = global_group.rank
        global_ranks = global_group.ranks
L
lilong12 已提交
320
        backend = _default_backend if backend is None else backend
321 322 323 324 325 326 327
        if ranks is None:
            ranks = global_ranks
        assert len(ranks) <= len(global_ranks), (
            "Size of new group must be less than or "
            "equal to that of the default global group.")
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
328
        if global_rank in ranks and size > 1:
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
            rank = ranks.index(global_rank)
            pg = _new_process_group_impl(
                backend,
                _default_store,
                rank,
                size,
                group_name,
                pg_options=None,
                group_id=gid)
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group

        return group
K
kuizhiqing 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
380 381 382 383
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
384 385 386 387
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
388 389 390 391 392 393 394
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
395
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
396
        [1], dtype="int32") if _non_static_mode() else fill_constant(
397
            [0], dtype="int32", value="1")
398 399
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
400 401
    return gp

402

K
kuizhiqing 已提交
403 404 405 406 407 408 409 410
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
411 412
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
413 414 415 416 417 418 419 420 421 422

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
423
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
442
    if _non_static_mode():
W
wanghuancoder 已提交
443
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
444 445 446 447 448 449 450 451

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
452

453

K
kuizhiqing 已提交
454
def _sync_comm_stream(tensor, ring_id=0):
455

J
Jiabin Yang 已提交
456
    if _non_static_mode():
W
wanghuancoder 已提交
457
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
458

K
kuizhiqing 已提交
459
    op_type = 'c_sync_comm_stream'
460

K
kuizhiqing 已提交
461 462 463 464 465 466 467 468 469
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
470 471 472
    """

    Broadcast a tensor from the source to all others.
473 474 475 476 477 478 479
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
480 481 482 483 484

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
485
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
486 487
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
488 489 490 491 492 493 494

    Returns:
        None.

    Examples:
        .. code-block:: python

495
            # required: distributed
496 497 498 499 500 501 502 503 504 505 506 507 508 509
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
510
    """
K
kuizhiqing 已提交
511 512 513 514 515 516 517

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
518
    if in_dygraph_mode():
519 520 521 522 523 524 525 526 527 528 529
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
530
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
531
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
532

J
Jiabin Yang 已提交
533
    if _non_static_mode():
W
wanghuancoder 已提交
534 535 536
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
537 538 539 540 541 542 543 544 545 546 547 548

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
549 550 551
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
552 553 554
        })


K
kuizhiqing 已提交
555
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
556 557 558
    """

    Reduce a tensor over all ranks so that all get the result.
559 560 561 562 563 564 565 566
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
567 568 569 570

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
571
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
572
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
573 574
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
575 576 577 578 579 580 581

    Returns:
        None.

    Examples:
        .. code-block:: python

582
            # required: distributed
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
598
    """
K
kuizhiqing 已提交
599 600 601
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
602
    if in_dygraph_mode():
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for allreduce.")
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
619
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
620
    if _non_static_mode():
621
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
622 623
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
624
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
625 626
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
627
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
628 629
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
630
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
631 632
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
633 634 635 636 637 638 639 640 641 642 643 644 645 646
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
647 648
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
649 650 651 652 653
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
654 655
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
656 657


K
kuizhiqing 已提交
658
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
659 660
    """

661 662 663 664 665 666 667 668
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
669 670 671 672 673

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
674
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
675
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
676 677
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
678 679 680 681 682 683 684

    Returns:
        None.

    Examples:
        .. code-block:: python

685
            # required: distributed
686 687 688 689 690 691 692 693 694 695 696 697 698 699
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
700
    """
K
kuizhiqing 已提交
701 702 703
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
704
    if in_dygraph_mode():
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for reduce.")
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
722 723 724

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
725
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
726

J
Jiabin Yang 已提交
727
    if _non_static_mode():
728
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
729 730 731
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
732
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
733 734 735
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
736
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
737 738 739
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
740
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
741 742 743
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
767 768 769
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
770 771 772
        })


K
kuizhiqing 已提交
773
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
774 775
    """

776 777 778 779 780 781 782 783 784
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
785 786 787 788 789 790

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
791
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
792 793
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
794 795 796 797 798 799 800

    Returns:
        None.

    Examples:
        .. code-block:: python

801
            # required: distributed
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
821
    """
K
kuizhiqing 已提交
822 823 824
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
825
    if in_dygraph_mode():
826 827 828 829 830 831 832 833
        group = _get_default_group() if group is None else group
        out = paddle.concat(tensor_list)
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
        tensor_list.extend(paddle.split(out, group.nranks, 0))
        return

K
kuizhiqing 已提交
834 835 836
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
837
    if _non_static_mode():
838 839
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
840
    else:
841 842 843
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
860 861 862
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
863 864
            })

K
kuizhiqing 已提交
865
    tensor_list.extend(paddle.split(out, nranks, 0))
866 867


K
kuizhiqing 已提交
868
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
869 870
    """

871 872 873 874 875 876 877
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
878 879 880 881

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
882
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
883 884
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
885
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
886 887
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
888 889 890 891 892 893 894

    Returns:
        None.

    Examples:
        .. code-block:: python

895
            # required: distributed
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
915
    """
K
kuizhiqing 已提交
916 917 918 919 920 921
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
922
    if in_dygraph_mode():
923 924 925 926 927 928 929 930 931
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
932
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
933 934

    if rank != gsrc:
935 936 937 938
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
939
    if in_dygraph_mode():
940 941 942 943 944 945 946
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
947
    if _non_static_mode():
W
wanghuancoder 已提交
948 949 950
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
951
    op_type = 'c_scatter'
952 953 954 955 956 957 958 959 960
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
961 962 963
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
964 965 966 967
            'nranks': nranks,
        })


968
def _c_identity(tensor, group=None):
L
lilong12 已提交
969 970 971 972 973 974 975 976 977 978 979
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
980 981 982 983
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
984
    if _non_static_mode():
W
wanghuancoder 已提交
985 986
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
987 988 989
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
990

L
lilong12 已提交
991 992 993
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
994

L
lilong12 已提交
995 996 997 998 999
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1000
            'ring_id': ring_id,
L
lilong12 已提交
1001 1002 1003 1004 1005 1006
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


1007
def _c_concat(tensor, group=None):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1021 1022
    group = _get_default_group() if group is None else group
    ring_id = group.id
1023

1024
    global_rank = _get_global_env().rank
1025 1026
    rank = group.rank
    nranks = group.nranks
1027

J
Jiabin Yang 已提交
1028
    if _non_static_mode():
W
wanghuancoder 已提交
1029 1030 1031
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
1049 1050
            'nranks': nranks,
            'rank': rank
1051 1052 1053 1054
        })
    return out


1055
def _c_split(tensor, group=None):
L
lilong12 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1068 1069 1070 1071
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1072 1073 1074 1075
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1076
    if _non_static_mode():
W
wanghuancoder 已提交
1077 1078 1079
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1080

L
lilong12 已提交
1081 1082 1083
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1084

L
lilong12 已提交
1085 1086 1087
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1088

L
lilong12 已提交
1089 1090 1091 1092 1093
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1094
            'ring_id': ring_id,
L
lilong12 已提交
1095 1096 1097 1098 1099 1100 1101 1102
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1114
    if _non_static_mode():
1115
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
1116
            return _C_ops.c_allreduce_sum_(
1117 1118 1119 1120
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
1140 1141


1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1156
    if _non_static_mode():
W
wanghuancoder 已提交
1157
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

1172

B
Baibaifan 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1231
    if _non_static_mode():
W
wanghuancoder 已提交
1232
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1233 1234 1235 1236 1237 1238
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1260

B
Baibaifan 已提交
1261 1262 1263 1264
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1265
    if _non_static_mode():
B
Baibaifan 已提交
1266
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1267 1268
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1269 1270 1271 1272 1273
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1274 1275
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1327
                     group=None):
1328 1329
    """
    Parallel Linear
1330 1331 1332

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1333
    axis = 1: the col dimension
1334
    
1335
    """
1336 1337 1338 1339
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1340 1341
    if axis == 0:
        if split_tensor:
1342
            x = _c_split(x, group=group)
1343
    else:
L
lilong12 已提交
1344 1345
        x = _c_identity(x, group=group)

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1364 1365 1366 1367
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1368
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1369 1370 1371 1372 1373

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1374
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1389
                'ring_id': ring_id,
L
lilong12 已提交
1390 1391 1392
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1393 1394
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1395 1396 1397 1398 1399 1400
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1401
                'rank': inner_rank,
1402
                'ring_id': ring_id,
L
lilong12 已提交
1403 1404 1405 1406 1407
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1408 1409


L
lilong12 已提交
1410 1411 1412 1413 1414 1415 1416
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1417
                        group=None):
1418 1419 1420
    """
    Parallel Embedding
    """
1421 1422 1423 1424
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1441 1442
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1453
    return out
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1502 1503 1504 1505 1506
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1525 1526 1527 1528 1529
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1567

1568
            # required: distributed
1569
            import paddle
1570
            import paddle.distributed.fleet as fleet
1571

1572
            paddle.enable_static()
1573
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1574
            fleet.init(is_collective=True)
1575
            data = paddle.randint(0, 8, shape=[10,4])
1576
            emb_out = paddle.distributed.split(
1577 1578 1579 1580
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1598
    if _non_static_mode():
L
lilong12 已提交
1599 1600 1601 1602
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1603
    else:
1604
        from .fleet import fleet
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1616 1617 1618
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1619

1620
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1631
    else:
L
lilong12 已提交
1632
        should_split = False
1633 1634 1635 1636 1637 1638 1639
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1640
            if x.shape[-1] == size[0]: should_split = True
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1662 1663 1664
            num_partitions,
            should_split,
            name=name,
1665
            group=None)
1666
        return linear_out
L
lilong12 已提交
1667 1668


L
lilong12 已提交
1669 1670
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1681 1682 1683 1684 1685 1686 1687
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1688
    
L
lilong12 已提交
1689 1690
    Returns:
        None.
1691
    
L
lilong12 已提交
1692 1693
    Examples:
        .. code-block:: python
1694

L
lilong12 已提交
1695 1696 1697 1698
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1699
            
L
lilong12 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1710
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1711 1712 1713 1714 1715 1716
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1717
    if in_dygraph_mode():
1718 1719 1720 1721
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1722
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1723
    nranks = len(in_tensor_list)
L
lilong12 已提交
1724
    if in_dygraph_mode():
1725 1726 1727 1728 1729 1730 1731
        out = paddle.concat(out_tensor_list, axis=0)
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
1732
    if _non_static_mode():
李季 已提交
1733 1734
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1735
    else:
W
wanghuancoder 已提交
1736 1737 1738 1739 1740
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1760
                'ring_id': ring_id,
L
lilong12 已提交
1761 1762 1763 1764 1765
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1766 1767 1768 1769 1770 1771 1772 1773
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1774 1775
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1776
    
L
lilong12 已提交
1777 1778 1779 1780 1781
    Returns:
        None.

    Examples:
        .. code-block:: python
1782

L
lilong12 已提交
1783
            # required: distributed
L
lilong12 已提交
1784
            import paddle
L
lilong12 已提交
1785
            from paddle.distributed import init_parallel_env
1786

L
lilong12 已提交
1787 1788 1789 1790 1791 1792 1793 1794
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1795 1796 1797
    """
    if group is not None and not group.is_member():
        return
1798

L
lilong12 已提交
1799
    if in_dygraph_mode():
1800 1801 1802 1803 1804 1805 1806 1807
        group = _get_default_group() if group is None else group
        task = group.process_group.send(tensor, dst)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1808 1809
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1810
    if _non_static_mode():
W
wanghuancoder 已提交
1811 1812
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1813
    op_type = 'send_v2'
L
lilong12 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1837 1838
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1839
    
L
lilong12 已提交
1840 1841 1842 1843 1844
    Returns:
        None.

    Examples:
        .. code-block:: python
1845

L
lilong12 已提交
1846
            # required: distributed
L
lilong12 已提交
1847
            import paddle
L
lilong12 已提交
1848
            from paddle.distributed import init_parallel_env
1849

L
lilong12 已提交
1850 1851 1852 1853 1854 1855 1856 1857
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1858 1859 1860
    """
    if group is not None and not group.is_member():
        return
1861

L
lilong12 已提交
1862
    if in_dygraph_mode():
1863 1864 1865 1866 1867 1868 1869 1870
        group = _get_default_group() if group is None else group
        task = group.process_group.recv(tensor, src)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1871 1872
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1873
    if _non_static_mode():
W
wanghuancoder 已提交
1874 1875 1876
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1877
    op_type = 'recv_v2'
L
lilong12 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })