pooling.py 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
20

21
__all__ = [
22
    'avg_pool1d',
23 24
    'avg_pool2d',
    'avg_pool3d',
25
    'max_pool1d',
26 27
    'max_pool2d',
    'max_pool3d',
28 29 30
    'adaptive_avg_pool1d',
    'adaptive_avg_pool2d',
    'adaptive_avg_pool3d',
31 32 33
    'adaptive_max_pool1d',
    'adaptive_max_pool2d',
    'adaptive_max_pool3d',
34 35 36
]


37 38 39 40 41
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
42
    if len(x.shape) != dimension:
43 44 45
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
46 47


48
def _check_instance(x, x_name, types=(int, float)):
49 50 51 52 53 54

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


55 56 57
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
58
    else:
59
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
60 61


62 63 64 65
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
90 91


92 93 94 95 96 97 98 99 100
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
101
                raise ValueError(
102 103 104 105 106 107 108 109 110 111 112 113 114 115
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
116
                raise ValueError(
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
137
    else:
138 139 140 141
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

142

143 144 145 146 147 148 149 150 151 152
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
153 154 155 156 157 158 159
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
160
               exclusive=True,
161 162
               ceil_mode=False,
               name=None):
D
Double_V 已提交
163
    """
164 165
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
166 167 168 169

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
170
                          `L` is the length of the feature. The data type is float32 or float64.
171
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
172
            it must contain an integer.
173
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
174 175 176 177 178 179 180 181
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
182
        exclusive (bool): Whether to exclude padding points in average pooling
183
                          mode, default is `True`.
184
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
185
            If it is set to False, the floor function will be used. The default value is False.
186 187 188 189 190 191 192 193 194
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
195 196
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
197 198 199 200
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
201 202 203 204 205 206 207 208
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
209 210 211
    """
    """NCL to NCHW"""
    data_format = "NCHW"
212 213
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
    _check_input(x, 3)
214
    x = unsqueeze(x, [2])
215
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
216 217 218 219 220 221 222
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

223 224 225
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
226

227 228
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
229 230 231 232 233

    if in_dygraph_mode():
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
234
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
235
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
236
            data_format)
237 238 239 240
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
241
    dtype = helper.input_dtype(input_param_name='x')
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
258
            "exclusive": exclusive,
259 260 261 262 263 264
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


265
def avg_pool2d(x,
266 267 268 269
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
270
               exclusive=True,
271 272
               divisor_override=None,
               data_format="NCHW",
273 274
               name=None):
    """
275 276
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
277

278
    Args:
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
299
        exclusive (bool): Whether to exclude padding points in average pooling
300 301 302 303 304
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
305 306 307
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
308
    
309 310
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
311
    
312 313 314 315
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
316
    
317 318
    Examples:
        .. code-block:: python
C
Chen Long 已提交
319 320 321 322 323 324 325 326 327 328 329
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
330
    """
331 332
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
333 334 335
    if stride is None:
        stride = kernel_size
    else:
336
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
337

338 339 340
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
341 342

    if in_dygraph_mode():
343 344 345 346
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'padding_algorithm', padding_algorithm, 'strides', stride,
            'paddings', padding, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
347
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
348
            data_format)
349 350 351 352 353
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
354

355
    op_type = 'pool2d'
356
    helper = LayerHelper(op_type, **locals())
357
    dtype = helper.input_dtype(input_param_name='x')
358 359 360 361 362
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
363
        outputs={"Out": pool_out},
364
        attrs={
365
            "pooling_type": "avg",
366 367 368 369 370 371 372 373
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
374
            "exclusive": exclusive,
375 376 377
            "data_format": data_format,
        })

378 379 380 381 382
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
383 384


385 386 387 388 389
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
390
               exclusive=True,
391 392 393
               divisor_override=None,
               data_format="NCDHW",
               name=None):
394
    """
395 396
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
397 398

    Args:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
417
        exclusive (bool): Whether to exclude padding points in average pooling
418 419 420 421 422
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
423
        name(str, optional): For detailed information, please refer
424 425
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
426
    
427
    Returns:
428
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
429
    
430
    Raises:
431 432 433
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
434
    
435 436
    Examples:
        .. code-block:: python
C
Chen Long 已提交
437
          
438
          import paddle
C
Chen Long 已提交
439 440
          import numpy as np

441 442 443 444 445 446 447 448
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
449
    """
450 451 452 453 454 455
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
456

457 458 459
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
460 461

    if in_dygraph_mode():
462 463 464 465
        output = core.ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
466
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
467
            data_format)
468 469 470 471 472 473
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
474

475 476
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
477
    dtype = helper.input_dtype(input_param_name='x')
478 479
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
480 481

    helper.append_op(
482
        type=op_type,
483 484 485
        inputs={"X": x},
        outputs=outputs,
        attrs={
486 487 488 489 490 491 492 493 494
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
495
            "exclusive": exclusive,
496
            "data_format": data_format,
497 498
        })

499 500 501 502 503 504
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
505 506


507
def max_pool1d(x,
508 509 510
               kernel_size,
               stride=None,
               padding=0,
511
               return_mask=False,
512 513 514
               ceil_mode=False,
               name=None):
    """
515 516
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
517 518

    Args:
519 520 521
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
522
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
523
            it must contain an integer.
524
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
525 526 527 528 529 530 531 532
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
533
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
534 535
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
536 537 538 539 540
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
541

542 543 544
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
545
        ShapeError: If the input is not a 3-D tensor.
546
        ShapeError: If the output's shape calculated is not greater than 0.
547

548 549
    Examples:
        .. code-block:: python
550

551 552
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
553 554
          import numpy as np

555 556 557
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
558
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
559
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
560
    """
561 562 563 564 565 566
    """NCL to NCHW"""
    data_format = "NCHW"
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
567 568 569
    if stride is None:
        stride = kernel_size
    else:
570
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
571

572 573
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
574

575 576
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
577 578

    if in_dygraph_mode():
579
        if return_mask:
D
Double_V 已提交
580 581 582 583 584 585
            pool_out = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
586 587 588
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
589 590 591 592 593 594 595 596 597
        else:
            pool_out = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

598
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
599
    helper = LayerHelper(op_type, **locals())
600
    dtype = helper.input_dtype(input_param_name='x')
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

623
    return (squeeze(pool_out, [2]),
624
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
625 626


627
def max_pool2d(x,
628 629 630
               kernel_size,
               stride=None,
               padding=0,
631
               return_mask=False,
632 633 634 635
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
636 637
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
638 639 640 641 642 643 644 645

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
646
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
647 648
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
649
            it must contain two integers, (stride_Height, stride_Width).
650
            Otherwise, the pool stride size will be a square of an int.
651 652 653 654 655 656 657
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
658
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
659
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
660
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
661 662 663 664 665 666 667
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
668 669
   
   Raises:
670 671 672
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
673
    
674 675
    Examples:
        .. code-block:: python
676

C
Chen Long 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
694
    """
695
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool2d')
696 697 698 699 700 701 702 703 704 705
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
706 707 708 709 710

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
711

712
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
713
        raise ValueError(
714
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
715 716
        )

717
    if in_dygraph_mode():
718
        if return_mask:
D
Double_V 已提交
719 720 721 722 723 724
            output = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
725
            return output if return_mask else output[0]
D
Double_V 已提交
726
        else:
D
Double_V 已提交
727 728 729 730 731 732 733
            output = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
734

735
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
736
    helper = LayerHelper(op_type, **locals())
737
    dtype = helper.input_dtype(input_param_name='x')
738
    pool_out = helper.create_variable_for_type_inference(dtype)
739 740
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
741 742 743 744

    helper.append_op(
        type=op_type,
        inputs={"X": x},
745
        outputs=outputs,
746
        attrs={
747
            "pooling_type": 'max',
748 749 750
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
751
            "paddings": padding,
752 753 754 755
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
756
            "exclusive": True,
757 758 759
            "data_format": data_format,
        })

760
    return (pool_out, mask) if return_mask else pool_out
761 762 763 764 765 766


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
767
               return_mask=False,
768 769 770 771
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
772 773
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
774 775
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
776
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
777
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
778
            is a tuple or list, it must contain three integers,
779
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
780
            Otherwise, the pool kernel size will be the cube of an int.
781 782
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
783
            Otherwise, the pool stride size will be a cube of an int.
784 785 786 787 788 789 790
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
791
        ceil_mode (bool): ${ceil_mode_comment}
792
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
793 794 795 796 797 798
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
799
    
800 801
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
802
    
803 804 805 806
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
807
    
808 809
    Examples:
        .. code-block:: python
810

C
Chen Long 已提交
811 812 813
            import paddle
            import paddle.nn.functional as F
            import numpy as np
814

C
Chen Long 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
829 830 831 832 833 834 835 836
    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

837
    channel_last = _channel_last(data_format, 3)
838

839 840
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
841

842
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
843
        raise ValueError(
844
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
845 846
        )

847
    if in_dygraph_mode():
848
        if return_mask:
D
Double_V 已提交
849 850 851 852 853 854
            output = core.ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
855
            return output if return_mask else output[0]
D
Double_V 已提交
856
        else:
D
Double_V 已提交
857 858 859 860 861 862 863
            output = core.ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
864

865
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
866
    helper = LayerHelper(op_type, **locals())
867
    dtype = helper.input_dtype(input_param_name='x')
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

890
    return (pool_out, mask) if return_mask else pool_out
891 892


893
def adaptive_avg_pool1d(x, output_size, name=None):
894
    """
895 896
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
897

898
    Args:
899 900 901 902
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
903
        output_size (int): The target output size. It must be an integer.
904
        name(str, optional): For detailed information, please refer
905 906
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
907
    Returns:
908 909
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
910
    Raises:
911
            ValueError: 'output_size' should be an integer.
912 913
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
929
              import numpy as np
930

931 932 933 934 935 936 937 938
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'adaptive_pool2d')
    _check_input(x, 3)
    check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
939

940
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
941

942 943
    l_type = "pool2d"
    x = unsqueeze(x, [2])
944
    if in_dygraph_mode():
945 946 947
        pool_out = core.ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                   pool_size, 'adaptive', True)
        return squeeze(pool_out, [2])
948

949
    helper = LayerHelper(l_type, **locals())
950
    dtype = helper.input_dtype(input_param_name='x')
951 952
    pool_out = helper.create_variable_for_type_inference(dtype)

953
    outputs = {"Out": pool_out}
954
    helper.append_op(
955
        type=l_type,
956 957 958
        inputs={"X": x},
        outputs=outputs,
        attrs={
959 960 961
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
962 963
        })

964
    return squeeze(pool_out, [2])
965 966


967 968
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
969 970
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
971 972 973

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
974
                          The data type can be float32 or float64.
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1008

1009 1010 1011
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1012
            out = paddle.nn.functional.adaptive_avg_pool2d(
1013 1014
                            x = x,
                            output_size=[3, 3])
1015
            # out.shape is [2, 3, 3, 3]
1016 1017
    """
    if not in_dygraph_mode():
1018 1019
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool2d')
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1035
        output_size = list(output_size)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        output = core.ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1050
    dtype = helper.input_dtype(input_param_name='x')
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1071 1072
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1073 1074 1075

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1076
                          The data type can be float32, float64.
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1116
            out = paddle.nn.functional.adaptive_avg_pool3d(
1117 1118
                            x = x,
                            output_size=[3, 3, 3])
1119
            # out.shape is [2, 3, 3, 3, 3]
1120 1121
    """
    if not in_dygraph_mode():
1122 1123
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1139
        output_size = list(output_size)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        output = core.ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1156
    dtype = helper.input_dtype(input_param_name='x')
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1172 1173


1174
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1175 1176 1177 1178 1179 1180 1181 1182 1183
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1184
        output_size (int): The pool kernel size. The value should be an integer.
1185
        return_mask (bool): If true, the index of max pooling point will be returned along
1186 1187 1188 1189 1190 1191 1192 1193
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1194
            ValueError: 'output_size' should be an integer.
1195 1196
    Examples:
        .. code-block:: python
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1212
              import numpy as np
1213

1214 1215 1216
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1217
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1218 1219 1220 1221 1222 1223
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'adaptive_max_pool1d')
    _check_input(x, 3)
1224
    check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
1225
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    l_type = 'max_pool2d_with_index'

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1236
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1237 1238

    helper = LayerHelper(l_type, **locals())
1239
    dtype = helper.input_dtype(input_param_name='x')
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1256
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1257 1258


1259
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1260 1261 1262
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1263

1264 1265 1266
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1267
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1268
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1269

1270 1271
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1272

1273 1274
        Examples:
            .. code-block:: python
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
    _check_input(x, 4)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1307
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
1308 1309 1310 1311 1312

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1313
        output_size = list(output_size)
1314 1315 1316 1317 1318 1319 1320 1321
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1322
        return pool_out if return_mask else pool_out[0]
1323 1324 1325 1326

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1327
    dtype = helper.input_dtype(input_param_name='x')
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1342
    #return (pool_out, mask) if return_mask else pool_out
1343 1344 1345
    return pool_out


1346
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1347 1348 1349
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1350

1351 1352 1353
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1354
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1355
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1356

1357 1358
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1359

1360 1361
        Examples:
            .. code-block:: python
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
    _check_input(x, 5)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1398
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
1399 1400 1401 1402 1403

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1404
        output_size = list(output_size)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool3d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1415
        return pool_out if return_mask else pool_out[0]
1416 1417 1418 1419

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1420
    dtype = helper.input_dtype(input_param_name='x')
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1436
    return (pool_out, mask) if return_mask else pool_out