communicator.h 16.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <ThreadPool.h>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <deque>
20
#include <map>
Q
Qiao Longfei 已提交
21 22
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
Q
Qiao Longfei 已提交
25
#include <utility>
Q
Qiao Longfei 已提交
26
#include <vector>
27
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
28 29 30

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
C
Chengmo 已提交
31 32
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
Q
Qiao Longfei 已提交
33
#include "paddle/fluid/operators/distributed/rpc_common.h"
C
Chengmo 已提交
34
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
35 36
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
37 38 39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

41 42
DECLARE_bool(communicator_is_sgd_optimizer);

Q
Qiao Longfei 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
65 66 67 68
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
69 70 71 72 73 74 75
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
76 77 78 79 80
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
81
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
82 83
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
84
    cv_.notify_one();
Q
Qiao Longfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
103
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
104 105
};

Q
Qiao Longfei 已提交
106 107 108 109
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

1
123malin 已提交
110
template <typename T>
Q
Qiao Longfei 已提交
111 112
inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
1
123malin 已提交
113
                      Scope* scope, bool merge_add = true) {
Q
Qiao Longfei 已提交
114 115 116 117 118 119
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
1
123malin 已提交
120 121
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims
            << "; merge add: " << merge_add;
Q
Qiao Longfei 已提交
122 123
    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
1
123malin 已提交
124
    out_t->mutable_data<T>(dims, cpu_place);
Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132
    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
1
123malin 已提交
133 134
    math::SetConstant<paddle::platform::CPUDeviceContext, T> constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<T>(0));
Q
Qiao Longfei 已提交
135
    // sum all vars to out
1
123malin 已提交
136
    auto result = EigenVector<T>::Flatten(*out_t);
Q
Qiao Longfei 已提交
137 138
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
1
123malin 已提交
139
      auto in = EigenVector<T>::Flatten(in_t);
Q
Qiao Longfei 已提交
140 141
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
1
123malin 已提交
142
    if (!merge_add) {
143
      result.device(*cpu_ctx.eigen_device()) =
1
123malin 已提交
144
          result / static_cast<T>(vars.size());
145
    }
Q
Qiao Longfei 已提交
146 147 148 149
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
1
123malin 已提交
150
    out_slr->mutable_value()->mutable_data<T>({{}}, cpu_place);
Q
Qiao Longfei 已提交
151 152 153 154 155 156
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
1
123malin 已提交
157 158
    if (merge_add) {
      math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, T> merge_add;
159 160
      merge_add(dev_ctx, inputs, out_slr);
    } else {
1
123malin 已提交
161
      math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, T>
162 163 164 165
          merge_average;
      merge_average(dev_ctx, inputs, out_slr);
    }

Q
Qiao Longfei 已提交
166
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
1
123malin 已提交
167
            << " dims: " << slr0.value().dims() << "; merge add: " << merge_add;
Q
Qiao Longfei 已提交
168 169 170 171 172
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
173 174
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
175 176
class Communicator {
 public:
1
123malin 已提交
177 178
  Communicator();
  explicit Communicator(const std::map<std::string, int>& env_flags);
T
tangwei12 已提交
179
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
180

1
123malin 已提交
181 182
  virtual void SetEnvFlagsDefault();

T
tangwei12 已提交
183 184 185
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
186

T
tangwei12 已提交
187 188
  virtual void Send(const std::string& var_name,
                    const framework::Scope& scope) = 0;
189 190 191 192 193

  virtual void Send(const std::vector<std::string>& sparse_var_names,
                    const std::vector<std::string>& sparse_var_tables,
                    const framework::Scope& scope) = 0;

T
tangwei12 已提交
194
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
195

T
tangwei12 已提交
196 197 198
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
                        Scope* recv_scope) = 0;
199

T
tangwei12 已提交
200 201
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
202

203 204 205 206 207 208 209
  // for geo-sgd
  virtual void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) = 0;

T
tangwei12 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  static Communicator* GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator* InitInstance(const RpcCtxMap& send_varname_to_ctx,
                                    const RpcCtxMap& recv_varname_to_ctx,
                                    Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>,
                   send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
    return communicator_.get();
  }

225 226
  template <typename T>
  static Communicator* InitInstance(
1
123malin 已提交
227 228
      const paddle::framework::ProgramDesc& program, Scope* recv_scope,
      const std::map<std::string, int>& env_flags) {
229
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
1
123malin 已提交
230
                   recv_scope, std::ref(env_flags));
231 232 233 234 235 236 237 238
    return communicator_.get();
  }

  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
1
123malin 已提交
239 240
      const int& trainers, const int& geo_need_push_nums,
      const std::map<std::string, int>& env_flags) {
241 242
    std::call_once(init_flag_, &Communicator::InitWithTranspilerInfo<T>,
                   program, training_scope, std::ref(vars_info),
1
123malin 已提交
243 244
                   std::ref(trainers), std::ref(geo_need_push_nums),
                   std::ref(env_flags));
245 246 247
    return communicator_.get();
  }

T
tangwei12 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap& send_varname_to_ctx,
                             const RpcCtxMap& recv_varname_to_ctx,
                             Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(send_varname_to_ctx, recv_varname_to_ctx,
                              recv_scope);
    }
  }

  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
1
123malin 已提交
262 263
                              Scope* recv_scope,
                              const std::map<std::string, int>& env_flags) {
T
tangwei12 已提交
264
    if (communicator_.get() == nullptr) {
1
123malin 已提交
265
      communicator_.reset(new T(std::ref(env_flags)));
T
tangwei12 已提交
266 267 268 269
      communicator_->InitImpl(program, recv_scope);
    }
  }

270 271 272 273 274
  template <typename T>
  static void InitWithTranspilerInfo(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
1
123malin 已提交
275 276
      const int& trainers, const int& geo_need_push_nums,
      const std::map<std::string, int>& env_flags) {
277
    if (communicator_.get() == nullptr) {
1
123malin 已提交
278
      communicator_.reset(new T(std::ref(env_flags)));
279 280 281 282 283
      communicator_->InitImpl(program, training_scope, std::ref(vars_info),
                              std::ref(trainers), std::ref(geo_need_push_nums));
    }
  }

T
tangwei12 已提交
284 285 286 287
 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
1
123malin 已提交
288
  std::unordered_map<std::string, int> env_flags_dict;
T
tangwei12 已提交
289 290
};

291
using SparseIdsMap =
C
Chengmo 已提交
292
    std::unordered_map<std::string, std::vector<std::unordered_set<int64_t>>>;
293

T
tangwei12 已提交
294 295
class AsyncCommunicator : public Communicator {
 public:
1
123malin 已提交
296 297 298
  AsyncCommunicator() : Communicator() {}
  explicit AsyncCommunicator(const std::map<std::string, int>& env_flags)
      : Communicator(env_flags) {}
T
tangwei12 已提交
299 300 301 302 303 304 305
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;
  void Recv() override;
Q
Qiao Longfei 已提交
306
  void RecvAll();
T
tangwei12 已提交
307 308 309 310 311 312 313 314

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
315 316 317
  void SendThread();
  void RecvThread();

318 319 320 321 322 323 324 325 326 327
  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

T
tangwei12 已提交
328
 private:
Q
Qiao Longfei 已提交
329 330 331
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
332 333
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
334 335
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
336 337
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
338 339
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
340
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
341 342
};

343 344
class GeoSgdCommunicator : public Communicator {
 public:
1
123malin 已提交
345 346 347
  GeoSgdCommunicator() : Communicator() {}
  explicit GeoSgdCommunicator(const std::map<std::string, int>& env_flags)
      : Communicator(env_flags) {}
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  ~GeoSgdCommunicator();
  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;

  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void Recv() override;

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

 private:
  void SendThread();
  std::unordered_set<int64_t> SparseIdsMerge(
      const std::vector<SparseIdsMap>& ids_send_vec,
C
Chengmo 已提交
378
      const std::string& var_name, const std::string& splited_var_name);
379

380 381
  void SendUpdateDenseVars(const std::string& var_name,
                           const std::string& splited_var_name);
382
  void SendUpdateSparseVars(const std::string& var_name,
C
Chengmo 已提交
383
                            const std::string& splited_var_name,
384
                            const std::unordered_set<int64_t>& ids_table);
C
Chengmo 已提交
385

386 387
  void RecvUpdateDenseVars(const std::string& var_name,
                           const std::string& splited_var_name);
C
Chengmo 已提交
388 389
  void RecvUpdateSparseVars(const std::string& var_name,
                            const std::string& splited_var_name);
390 391 392 393 394 395 396 397 398

  void GeoSgdDenseParamInit(framework::Scope* scope_x,
                            framework::Scope* scope_y,
                            const std::string var_name);

  void GeoSgdSparseParamInit(framework::Scope* scope_x,
                             framework::Scope* scope_y,
                             const std::string var_name);

C
Chengmo 已提交
399 400 401 402 403 404 405 406
  void RpcSend(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

  void RpcRecv(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

407 408 409 410 411 412 413 414 415 416 417 418 419
  const std::string VarToDeltaVar(const std::string var_name) {
    std::string delta_name = var_name;
    const std::string send_name = delta_name.append(".delta");
    return send_name;
  }

  const std::string DeltaVarToVar(const std::string var_name) {
    std::string origin_name = var_name;
    origin_name.erase(origin_name.find(".delta"), 6);
    const std::string param_name = origin_name;
    return param_name;
  }

C
Chengmo 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433
  size_t GetSplitedVarIndex(const std::string var_name,
                            const std::string splited_var_name) {
    size_t index = 0;
    for (size_t i = 0;
         i < send_varname_to_ctx_[var_name].splited_var_names.size(); i++) {
      if (send_varname_to_ctx_[var_name].splited_var_names[i] ==
          splited_var_name) {
        index = i;
        break;
      }
    }
    return index;
  }

434 435
 private:
  int trainer_nums_ = 1;
436
  size_t geo_need_push_nums_ = 100;
437
  bool is_geo_sgd_ = false;
438 439
  int send_var_nums_ = 0;

440 441
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

  // parameter for local training
  Scope* training_scope_;

  // parameter for delta calc and send
  std::shared_ptr<Scope> delta_scope_;

  // parameter for storage the pserver param after last recv
  std::shared_ptr<Scope> old_scope_;

  // parameter on pserver
  std::shared_ptr<Scope> pserver_scope_;

  // if var is sparse, using selected rows, bool=true
  std::unordered_map<std::string, bool> var_list_;
457 458 459 460 461

  std::shared_ptr<BlockingQueue<std::shared_ptr<SparseIdsMap>>>
      need_push_queue_;
  std::vector<SparseIdsMap> ids_send_vec_;

C
Chengmo 已提交
462
  std::unordered_map<std::string, std::vector<int64_t>> absolute_section_;
463
  std::unordered_map<std::string, int64_t> vars_first_dimension_;
C
Chengmo 已提交
464

465 466
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<std::thread> send_thread_{nullptr};
C
Chengmo 已提交
467 468

  size_t need_thread_nums_{0};
469 470
};

Q
Qiao Longfei 已提交
471 472 473
}  // namespace distributed
}  // namespace operators
}  // namespace paddle