test_downpoursgd.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import os
import signal
import subprocess
import time
import unittest
import sys
from op_test import OpTest
from paddle.fluid.trainer_desc import DistMultiTrainer
from paddle.fluid.device_worker import DownpourSGD
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib


class TestListenAndServOp(OpTest):
    def setUp(self):
        pass

    def test_device_work_use_cvm(self):
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
            cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
            os.system(cmd)
43
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True)
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            ps_param = pslib.PSParameter()
            with open("fleet_desc.prototxt") as f:
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = True
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
79
            opt_info["stat_var_names"] = []
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

            main_program._fleet_opt = opt_info
            trainer = DistMultiTrainer()
            trainer._set_program(main_program)
            device_worker = DownpourSGD()
            device_worker._set_fleet_desc(fleet_desc)
            trainer._set_device_worker(device_worker)
            trainer._set_fleet_desc(fleet_desc)
            trainer._gen_trainer_desc()
            cmd = "rm fleet_desc.prototxt*"
            os.system(cmd)

    def test_device_work(self):
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
            cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
            os.system(cmd)
99
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True)
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            ps_param = pslib.PSParameter()
            with open("fleet_desc.prototxt") as f:
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
135
            opt_info["stat_var_names"] = []
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

            main_program._fleet_opt = opt_info
            trainer = DistMultiTrainer()
            trainer._set_program(main_program)
            device_worker = DownpourSGD()
            device_worker._set_fleet_desc(fleet_desc)
            trainer._set_device_worker(device_worker)
            trainer._set_fleet_desc(fleet_desc)
            trainer._gen_trainer_desc()
            cmd = "rm fleet_desc.prototxt*"
            os.system(cmd)


if __name__ == "__main__":
    unittest.main()