quantization_pass.py 56.7 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
25 26
    'TransformForMobilePass', 'ScaleForTrainingPass', 'ScaleForInferencePass',
    'AddQuantDequantPass'
27
]
W
WangZhen 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

_out_scale_op_list = [
    "mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d",
    "batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul",
    "dropout", "split", "prelu", "conv2d_transpose", "leaky_relu"
]

W
WangZhen 已提交
44

45 46 47 48
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
49
        'The scope cannot be set None.'
50
    assert place is not None, \
51
        'The place cannot be set None.'
52 53 54 55
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


56
class QuantizationTransformPass(object):
W
WangZhen 已提交
57
    def __init__(self,
58
                 scope=None,
59
                 place=None,
W
WangZhen 已提交
60 61 62 63
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
64
                 window_size=10000,
65
                 moving_rate=0.9,
66 67
                 skip_pattern='skip_quant',
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
W
WangZhen 已提交
68
        """
69
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
70
        activation quantization type.
71

W
WangZhen 已提交
72
        Args:
73
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
74 75
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
76
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
77
                parameters described above.
W
WangZhen 已提交
78 79 80 81
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
82 83 84 85 86
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
87
            weight_quantize_type (str): quantization type for weights,
88 89 90
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
91
            window_size (int): the window size for 'range_abs_max' quantization.
92 93 94
            skip_pattern(str): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
95 96
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"].
97

W
WangZhen 已提交
98 99
        Examples:
        .. code-block:: python
100 101 102 103
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
104
            from paddle.fluid.contrib.slim.graph import IrGraph
105 106
            from paddle.fluid import core

107
            graph = IrGraph(core.Graph(program.desc), for_test=False)
108
            place = fluid.CPUPlace()
109
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
110
            place)
111
            transform_pass.apply(graph)
W
WangZhen 已提交
112
        """
113
        self._scope = scope
114
        self._place = place
115 116
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
117
        self._skip_pattern = skip_pattern
W
WangZhen 已提交
118

119 120 121 122
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
123 124
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
125 126
        if activation_quantize_type not in quant_type:
            raise ValueError(
127 128 129
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
130 131
        if weight_quantize_type not in quant_type:
            raise ValueError(
132 133 134
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(weight_quantize_type)))
W
WangZhen 已提交
135

136 137 138
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
139
        self._moving_rate = moving_rate
W
WangZhen 已提交
140

141 142 143 144 145
        self._quantizable_ops = quantizable_op_type
        supported_quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        for op in self._quantizable_ops:
            assert op in supported_quantizable_ops, \
                op + " is not supported for quantization."
146
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
147 148
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
149
        ]
150 151
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
152

153
    def apply(self, graph):
154 155 156 157 158 159 160 161
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
162
        assert isinstance(graph,
163 164
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
165 166
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
167
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
168

169 170 171 172 173
        def _quant_preprocess(op_node):
            user_skipped = isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1

174
            if user_skipped:
175 176
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
177 178
        def _transform_forward(graph, op):
            for var_node in op.inputs:
179 180
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
181 182 183
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
184
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
185 186
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
187
                        in persistable_vars else self._activation_quantize_type
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
208
                    dequantized_vars[var_node.name()] = dequant_var_node
209
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
210 211 212 213

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
214 215
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
216 217
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
218
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
219 220 221 222
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
223

224
        if not self._is_test:
W
WangZhen 已提交
225
            self._create_global_step(graph)
226
        ops = graph.all_op_nodes()
227 228 229 230 231 232
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
W
WangZhen 已提交
233 234
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
235
        for op in ops:
236
            if op.name() in self._quantizable_ops:
237 238 239 240
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
241
                _transform_forward(graph, op)
W
WangZhen 已提交
242 243
        # The loop for renaming the inputs of backward op.
        for op in ops:
244
            if op.name() in self._quantizable_grad_ops:
245 246 247 248
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
249
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
250
        graph.resolve_hazard()
251
        return graph
W
WangZhen 已提交
252

W
WangZhen 已提交
253
    def _create_global_step(self, graph):
254 255
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
256
            counter_name = cpt.to_text('@STEP_COUNTER@')
257
            for node in graph.all_var_nodes():
W
WangZhen 已提交
258
                if node.name() == counter_name:
259 260
                    self._global_step = node
            if self._global_step is None:
261
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
262 263 264 265
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
266 267 268 269 270 271
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
272 273
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
274
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
275 276
                increment_op = graph.create_op_node(
                    op_type='increment',
277 278 279 280 281
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
282 283
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
284 285 286
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
287

W
WangZhen 已提交
288 289 290 291 292 293 294
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
295 296
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
297 298 299
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
300 301 302 303 304 305 306 307 308

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
309 310 311
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
312 313
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
314
            var_type=var_node.type(),
315
            shape=[1],
316
            var_dtype=var_node.dtype())
W
WangZhen 已提交
317 318
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
319 320 321 322
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
323 324 325
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
326 327 328
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
329 330 331 332 333 334 335 336 337 338
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
339 340 341
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
342

343
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
344 345 346
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
347
            var_dtype=var_node.dtype())
348 349
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
350 351 352 353 354 355
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
356 357 358 359 360

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

361
        if not self._is_test:
W
WangZhen 已提交
362
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
363
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
364 365
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
366
                shape=[self._window_size],
367
                var_dtype=var_node.dtype())
368 369
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
370 371 372 373 374 375 376
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

377
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
378 379
            outputs['OutScales'] = scales_node
        attrs = {
380
            'window_size': self._window_size,
W
WangZhen 已提交
381
            'bit_length': quant_bits,
382 383
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
384 385 386 387 388 389 390
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

391 392 393 394
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
395

396 397 398
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
399 400 401

        return quant_var_node, scale_out_node

402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
416 417
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
418 419 420 421 422 423
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
424 425 426 427 428 429 430 431 432 433

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
434 435
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
436
            _init_var_node(
437
                state_in_node,
438 439 440 441
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
442 443 444 445 446
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
447 448 449 450 451 452
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
519 520 521 522 523 524 525 526
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
527 528 529
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
530 531 532
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
533 534 535 536
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
537 538 539
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
540 541 542
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
543 544
        return dequant_var_node

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

W
WangZhen 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
586
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
587 588
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
589 590 591


class QuantizationFreezePass(object):
592 593 594 595 596 597 598 599 600 601 602 603
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
604 605 606 607 608
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 
            'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
            since weights are fixed once the model is well trained.
        quantizable_op_type(list[str]): List the type of ops that will be quantized. 
            Default is ["conv2d", "depthwise_conv2d", "mul"].
609 610
    """

W
WangZhen 已提交
611 612 613 614 615
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
616 617
                 weight_quantize_type='abs_max',
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
W
WangZhen 已提交
618 619 620 621 622 623 624 625 626
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
627 628 629 630 631
        self._quantizable_ops = quantizable_op_type
        supported_quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        for op in self._quantizable_ops:
            assert op in supported_quantizable_ops, \
                op + " is not supported for quantization."
632
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
633 634
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
635 636 637 638 639
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
640 641 642 643 644 645
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
646 647
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
648 649 650
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
651
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
652 653 654 655
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
656 657 658 659 660 661 662 663
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
664
                    else:
665 666
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
667 668 669 670 671
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
672
                                                    self._weight_bits)
W
WangZhen 已提交
673
                    self._restore_var(input_arg_name, quantized_param_v)
674
                else:
675 676
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
677
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
678

679
        ops = graph.all_op_nodes()
W
WangZhen 已提交
680 681 682 683 684
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

685
        ops = graph.all_op_nodes()
W
WangZhen 已提交
686 687 688
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
689 690 691 692
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
693 694 695 696
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
697 698 699 700

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
701 702 703
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
704 705 706 707
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
708
        graph.resolve_hazard()
709
        return graph
W
WangZhen 已提交
710 711

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
712 713
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
714 715
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
716
        else:
717 718
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
719
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
720

721 722 723 724
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
725 726 727 728 729
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
730 731 732 733 734 735 736 737 738 739 740 741 742 743
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

744
        if len(op_node.output_arg_names()) != 1:
745 746 747
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

748 749
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
750 751 752 753 754
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
755 756
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
757 758 759
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
780
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
781 782
        return dequant_var_node

W
WangZhen 已提交
783
    def _insert_post_dequant_op(self, graph, op_node):
784
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
785 786 787 788 789 790 791
        if len(op_node.input_arg_names()) >= 2 and len(persistable_vars) == 0:
            raise ValueError("The op %s has more than one inputs "
                             "and all of them are not persistable. "
                             "Now, it is not supported!" % (op_node.name()))
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
792
        for var_node in op_node.inputs:
W
WangZhen 已提交
793
            name = var_node.name()
794 795 796 797 798
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
799
                new_in.clear_outputs()
W
WangZhen 已提交
800 801
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
802
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
803 804 805 806
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
807
                max_range *= param_range / scale_v
W
WangZhen 已提交
808
            else:
809
                max_range *= act_range
810
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
811 812
                scale_var_node = self._var_scale_map[original_var_name]

813
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
814 815 816
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

817 818
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
819 820
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
821 822 823
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
824 825
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
826 827 828 829
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
830 831 832 833 834 835
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
836
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
837 838 839 840 841
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

842 843 844
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
845 846 847

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
848
        ops = graph.all_op_nodes()
W
WangZhen 已提交
849 850 851 852 853 854
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

855 856 857 858 859 860
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
884
    def _is_float(self, v):
W
WangZhen 已提交
885 886 887
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
888
    def _quant(self, x, scale, num_bits):
889 890 891 892 893 894
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
895 896 897


class ConvertToInt8Pass(object):
898 899 900 901 902 903
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
904 905 906
            8bits weight tensors.
        quantizable_op_type(list[str]): List the type of ops that will be quantized. 
            Default is ["conv2d", "depthwise_conv2d", "mul"].
907 908
    """

909 910 911 912
    def __init__(self,
                 scope,
                 place,
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
913 914 915 916 917 918
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
919 920 921 922 923
        self._quantizable_ops = quantizable_op_type
        supported_quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        for op in self._quantizable_ops:
            assert op in supported_quantizable_ops, \
                op + " is not supported for quantization."
924 925

    def apply(self, graph):
926 927 928 929 930 931 932
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
933 934
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
935 936 937 938
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
939 940 941 942
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
943 944 945 946 947 948 949 950 951 952 953 954
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
955
        graph.resolve_hazard()
956 957 958 959
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
960
        int8_var_node = graph.create_persistable_node(
961
            name=cpt.to_text(int8_var_node_name),
962 963
            var_type=var_node.type(),
            shape=var_node.shape(),
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
979
        ops = graph.all_op_nodes()
980 981 982 983 984 985
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

986 987 988 989 990 991
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
992 993 994 995
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
996 997 998 999
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

1000
    def __init__(self):
1001 1002
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1003 1004

    def apply(self, graph):
1005 1006 1007 1008 1009 1010 1011 1012
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
1013
        ops = graph.all_op_nodes()
1014 1015 1016
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1017
                op_node.set_type('quantize')
1018 1019 1020 1021 1022 1023 1024
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1025
                op_node.set_type('dequantize')
1026 1027 1028 1029 1030 1031
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1032
        graph.resolve_hazard()
1033
        return graph
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050


class ScaleForTrainingPass(object):
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1051
        self._teller_set = _out_scale_op_list
1052 1053 1054 1055 1056 1057 1058 1059 1060

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1061 1062
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        self._is_test = graph.is_test()
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                in_node = graph._find_node_by_name(
                    op_node.outputs, op_node.output_arg_names()[0])
                out_node = graph.create_var_node_from_desc(in_node.var())
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
                ins = {'X': in_node}
                outs = {'Out': out_node, 'OutScale': scale_node}
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    data_type = 'float64' if in_node.dtype(
                    ) == core.VarDesc.VarType.FP64 else 'float32'
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, out_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


class ScaleForInferencePass(object):
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1153
        self._teller_set = _out_scale_op_list
1154 1155 1156 1157 1158 1159 1160 1161 1162

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1163 1164
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                scale_name = self._scale_name(op_node.output_arg_names()[0])
                scale_v = np.array(
                    self._scope.find_var(scale_name).get_tensor())[0]
                op_node.op()._set_attr("out_scale", float(scale_v))
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1183 1184 1185


class AddQuantDequantPass(object):
1186 1187 1188 1189 1190
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1191 1192
                 skip_pattern='skip_quant',
                 quantizable_op_type=["elementwise_add", "pool2d"]):
1193 1194
        """
        This pass is used to add quant_dequant op for some ops, such as the
1195
        'elementwise_add' and 'pool2d' op.
1196 1197 1198 1199 1200 1201
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1202
        self._skip_pattern = skip_pattern
1203 1204 1205 1206 1207 1208 1209 1210 1211
        self._quantizable_op_type = quantizable_op_type
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        supported_quantizable_op_type = ["elementwise_add", "pool2d"]
        for op_type in quantizable_op_type:
            assert op_type in supported_quantizable_op_type, \
                op_type + " is not supported for quantization."
1212 1213 1214

    def apply(self, graph):
        """
1215
        Add quant_dequant before some ops, such as the 'elementwise_add'
1216
        and 'pool2d' op.
1217 1218 1219 1220 1221 1222
        Args:
            graph(IrGraph): the target graph.
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1223
        dequantized_vars_map = collections.OrderedDict()
1224
        ops = graph.all_op_nodes()
1225

1226
        for op_node in ops:
1227
            if op_node.name() in self._quantizable_op_type:
1228 1229 1230 1231 1232
                if isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1:
                    continue

1233 1234 1235 1236 1237 1238 1239 1240 1241
                in_nodes_all_not_persistable = True
                for input_name in op_node.input_arg_names():
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
                    in_nodes_all_not_persistable = (
                        in_nodes_all_not_persistable and
                        not in_node.persistable())
                if not in_nodes_all_not_persistable:
                    continue
1242

1243 1244 1245 1246
                input_names = op_node.input_arg_names()
                for input_name in input_names:
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
1247 1248 1249 1250 1251 1252 1253
                    if input_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[input_name]
                    else:
                        quant_var_node, scale_var_node = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[input_name] = quant_var_node
1254
                    graph.update_input_link(in_node, quant_var_node, op_node)
1255 1256

        for op_node in ops:
1257
            if op_node.name() in self._quantizable_grad_op_type:
1258 1259 1260 1261 1262 1263 1264 1265
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node