communicator.cc 45.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
Q
Qiao Longfei 已提交
16
#include <gflags/gflags.h>
17
#include <paddle/fluid/framework/program_desc.h>
Q
Qiao Longfei 已提交
18
#include <chrono>  // NOLINT
19
#include <map>
Q
Qiao Longfei 已提交
20
#include <thread>  // NOLINT
21
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
23 24
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
26
#include "paddle/fluid/framework/variable_helper.h"
C
Chengmo 已提交
27
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
28 29
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"
30
#include "paddle/fluid/string/split.h"
Q
Qiao Longfei 已提交
31

Q
Qiao Longfei 已提交
32 33 34 35
namespace paddle {
namespace operators {
namespace distributed {

36 37 38 39
using Tree =
    std::map<std::string, std::map<std::string, std::vector<std::string>>>;
using RpcCtxMap = operators::distributed::RpcCtxMap;

Q
Qiao Longfei 已提交
40 41 42 43 44 45
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

46 47 48 49 50 51 52
template <typename T>
inline void VSUB(int n, const T *x, const T *y, T *z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

53
Communicator::Communicator() {}
1
123malin 已提交
54

55 56 57
Communicator::Communicator(const std::map<std::string, std::string> &envs_) {
  for (auto &iter : envs_) {
    envs[iter.first] = iter.second;
1
123malin 已提交
58 59 60
  }
}

T
tangwei12 已提交
61
std::once_flag Communicator::init_flag_;
62
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
63

T
tangwei12 已提交
64 65 66
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
67
  VLOG(0) << "AsyncCommunicator Initializing";
T
tangwei12 已提交
68 69 70 71
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

72 73 74 75 76 77 78
  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
79
              send_queue_size_);
80
    }
81
    send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
82 83 84 85 86
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
87
    recv_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
Q
Qiao Longfei 已提交
88 89 90
  }
}

T
tangwei12 已提交
91 92
void AsyncCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                 Scope *param_scope) {
93
  VLOG(0) << "AsyncCommunicator Initializing";
T
tangwei12 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
1
123malin 已提交
107 108
      auto merge_add = boost::get<bool>(op->GetNullableAttr("merge_add"));
      if (!merge_add) {
109
        merge_add = is_sgd_optimizer_;
1
123malin 已提交
110 111 112
      }
      auto use_send_handler =
          boost::get<bool>(op->GetNullableAttr("use_send_handler"));
T
tangwei12 已提交
113
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
1
123malin 已提交
114 115
          send_var_name, send_varnames, epmap, height_section, trainer_id,
          merge_add, use_send_handler);
T
tangwei12 已提交
116 117 118 119
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
120 121 122
      PADDLE_ENFORCE_GT(do_not_run, 0,
                        platform::errors::InvalidArgument(
                            "recv op's attr `do_not_run` must be True!"));
T
tangwei12 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::AsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

AsyncCommunicator::~AsyncCommunicator() {
Q
Qiao Longfei 已提交
144 145 146 147 148
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (recv_thread_) recv_thread_->join();
}

T
tangwei12 已提交
149
void AsyncCommunicator::SendThread() {
Q
Qiao Longfei 已提交
150
  VLOG(3) << "SendThread start!";
Q
Qiao Longfei 已提交
151 152 153
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
154
    VLOG(4) << "run send graph";
Q
Qiao Longfei 已提交
155
    auto before_run_send_graph = GetCurrentUS();
Q
Qiao Longfei 已提交
156
    for (auto &iter : send_varname_to_queue_) {
Q
Qiao Longfei 已提交
157 158
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
Q
Qiao Longfei 已提交
159
      if (var_queue->Size() > 0) {
Q
Qiao Longfei 已提交
160
        auto send_task = [this, &var_name, &var_queue] {
161
          VLOG(4) << var_name << " merge and send";
Q
Qiao Longfei 已提交
162
          std::vector<std::shared_ptr<Variable>> vars;
163 164
          int merged_var_num = 0;
          int wait_times = 0;
165
          while (merged_var_num < max_merge_var_num_) {
Q
Qiao Longfei 已提交
166
            if (var_queue->Size() == 0) {
167
              VLOG(4) << "wait_times -> " << wait_times;
168
              if (wait_times >= send_wait_times_) {
Q
Qiao Longfei 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;

              vars.push_back(var_queue->Pop());
              // only count the send number of the first var
              if (var_name == send_varname_to_queue_.begin()->first) {
                grad_num_.fetch_add(1, std::memory_order_relaxed);
              }
              merged_var_num++;
183
            }
Q
Qiao Longfei 已提交
184
          }
Q
Qiao Longfei 已提交
185
          auto before_merge = GetCurrentUS();
1
123malin 已提交
186 187 188 189 190 191 192
          auto &ctx = send_varname_to_ctx_.at(var_name);
          if (ctx.use_send_handler) {
            MergeVars<float>(var_name, vars, send_scope_.get(), ctx.merge_add);
          } else {
            MergeVars<int64_t>(var_name, vars, send_scope_.get(),
                               ctx.merge_add);
          }
Q
Qiao Longfei 已提交
193
          auto after_merge = GetCurrentUS();
194
          VLOG(4) << "merge " << merged_var_num << " " << var_name
Q
Qiao Longfei 已提交
195
                  << " use time " << after_merge - before_merge;
Q
Qiao Longfei 已提交
196
          auto send_functor = distributed::ParameterSend<float>();
197
          send_functor(ctx, *send_scope_, true, 1);
Q
Qiao Longfei 已提交
198
          auto after_send = GetCurrentUS();
199
          VLOG(4) << "send " << var_name << " use time "
Q
Qiao Longfei 已提交
200
                  << after_send - after_merge;
Q
Qiao Longfei 已提交
201 202 203
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
204
      } else {
205
        VLOG(4) << var_name << " queue empty";
Q
Qiao Longfei 已提交
206
      }
Q
Qiao Longfei 已提交
207 208 209
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
210
    }
Q
Qiao Longfei 已提交
211
    auto after_run_send_graph = GetCurrentUS();
212

213
    VLOG(4) << "run send graph use time "
214
            << after_run_send_graph - before_run_send_graph;
T
tangwei12 已提交
215
    Recv();
Q
Qiao Longfei 已提交
216
  }
217
  VLOG(0) << "communicator stopped, send thread exit";
Q
Qiao Longfei 已提交
218 219
}

T
tangwei12 已提交
220
void AsyncCommunicator::RecvThread() {
Q
Qiao Longfei 已提交
221
  VLOG(3) << "RecvThread start!";
Q
Qiao Longfei 已提交
222
  while (running_) {
223
    int grad_num = grad_num_.load();
224
    if (grad_num > min_send_grad_num_before_recv_) {
225 226 227 228 229 230
      VLOG(1) << "current grad num " << grad_num;
      RecvAll();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
Q
Qiao Longfei 已提交
231
  }
232
  VLOG(0) << "communicator stopped, recv thread exit";
Q
Qiao Longfei 已提交
233 234
}

T
tangwei12 已提交
235
void AsyncCommunicator::Recv() {
236
  if (independent_recv_thread_) {
T
tangwei12 已提交
237
    return;
238 239
  }

T
tangwei12 已提交
240 241 242 243 244 245
  auto grad_num = grad_num_.load();
  if (grad_num > 0) {
    RecvAll();
    grad_num_.store(0);
  } else {
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
246 247 248
  }
}

T
tangwei12 已提交
249 250 251 252 253 254 255 256 257 258 259
void AsyncCommunicator::RecvAll() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
260
      recv_functor(iter.second, *recv_scope_);
T
tangwei12 已提交
261 262 263 264 265 266 267
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
268
  VLOG(3) << "run recv graph use time " << after_recv - before_send;
269 270
}

T
tangwei12 已提交
271
void AsyncCommunicator::Start() {
272 273 274 275 276 277 278 279
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
T
tangwei12 已提交
280
        new std::thread(std::bind(&AsyncCommunicator::SendThread, this)));
281
    if (independent_recv_thread_) {
282
      recv_thread_.reset(
T
tangwei12 已提交
283
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
284 285 286 287
    }
  }
}

T
tangwei12 已提交
288
void AsyncCommunicator::Stop() {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
Q
Qiao Longfei 已提交
304
  }
305
  VLOG(0) << "Communicator stop done";
Q
Qiao Longfei 已提交
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const std::vector<std::string> &var_tables,
                             const framework::Scope &scope) {
  PADDLE_ENFORCE_EQ(
      var_names.size(), 1,
      platform::errors::InvalidArgument("var_names.size() == 1 is permitted"));
  auto var_name = var_names[0];
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE_EQ(
      grad_var->IsInitialized(), true,
      platform::errors::InvalidArgument("grad var should be inited"));

  auto tmp_grad_var = std::make_shared<Variable>();
  framework::CopyVariable(*grad_var, tmp_grad_var.get());
  auto &queue = send_varname_to_queue_.at(var_name);
  VLOG(3) << "send " << var_name << " queue size " << queue->Size();
  queue->Push(tmp_grad_var);
}
327 328 329 330 331 332

GeoSgdCommunicator::~GeoSgdCommunicator() {
  running_ = false;
  if (send_thread_) send_thread_->join();
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
void GeoSgdCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                  Scope *recv_scope) {
  VLOG(0) << "GeoCommunicator Initializing";

  training_scope_ = std::move(recv_scope);

  auto geo_send_varnames = envs["geo_send_varnames"];
  auto varnames = paddle::string::Split(geo_send_varnames, '#');

  for (auto &var_name : varnames) {
    auto var_attr_str = envs.at(var_name);
    auto var_attrs = paddle::string::Split(var_attr_str, '#');
    auto split_varnames = paddle::string::Split(var_attrs[0], '&');
    auto sections = paddle::string::Split(var_attrs[1], '&');
    auto endpoints = paddle::string::Split(var_attrs[2], '&');
    bool is_sparse = static_cast<bool>(std::stoi(var_attrs[3]));

350 351
    std::string send_var_name = VarToDeltaVar(var_name);
    std::vector<std::string> send_var_names;
352
    for (auto origin_var_name : split_varnames) {
353 354 355 356
      send_var_names.push_back(VarToDeltaVar(origin_var_name));
    }

    std::vector<int64_t> vars_sections_int = {};
357
    for (std::string str : sections) {
358 359 360 361 362 363
      int64_t str2i = std::stol(str.c_str());
      vars_sections_int.push_back(str2i);
    }

    var_list_[var_name] = is_sparse;
    send_varname_to_ctx_[send_var_name] = operators::distributed::RpcContext(
364
        send_var_name, send_var_names, endpoints, vars_sections_int, 0);
365
    recv_varname_to_ctx_[var_name] = operators::distributed::RpcContext(
366
        var_name, split_varnames, endpoints, vars_sections_int, 0);
C
Chengmo 已提交
367

368 369 370 371 372 373
    absolute_section_[var_name] = operators::ToAbsoluteSection(
        send_varname_to_ctx_[send_var_name].height_sections);

    vars_first_dimension_[var_name] = 0;
    for (int64_t section : vars_sections_int) {
      vars_first_dimension_[var_name] += section;
C
Chengmo 已提交
374
    }
375
    send_var_nums_ += split_varnames.size();
376 377 378 379 380 381
  }

  if (send_varname_to_ctx_.size() == 0 && recv_varname_to_ctx_.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

382
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
383 384
  need_push_queue_ =
      std::make_shared<BlockingQueue<std::shared_ptr<SparseIdsMap>>>(
385
          geo_need_push_nums_);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoSgdCommunicator::Start() {
  VLOG(0) << "Geo Sgd Communicator start";
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    VLOG(0) << "start send thread ";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
        new std::thread(std::bind(&GeoSgdCommunicator::SendThread, this)));
  }
}

void GeoSgdCommunicator::Stop() {
  VLOG(0) << "Geo Sgd Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Geo Sgd Communicator stop done";
}

419 420
void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                              const std::vector<std::string> &sparse_var_tables,
421
                              const framework::Scope &scope) {
422
  if (sparse_var_names.size() == 1 && sparse_var_names[0] == "param_init") {
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    for (auto &iter : var_list_) {
      // For sparse param, old_scope store LoDTensor,
      // pserver_scope store SelectedRows.
      auto local_var_name = iter.first;
      if (var_list_[local_var_name] == true) {
        GeoSgdSparseParamInit(training_scope_, pserver_scope_.get(),
                              local_var_name);
      } else {
        GeoSgdDenseParamInit(training_scope_, pserver_scope_.get(),
                             local_var_name);
      }
      GeoSgdDenseParamInit(training_scope_, old_scope_.get(), local_var_name);
    }
  }

  std::shared_ptr<SparseIdsMap> ids_table = std::make_shared<SparseIdsMap>();
C
Chengmo 已提交
439
  auto before_run_send = GetCurrentUS();
440 441 442
  for (size_t i = 0; i < sparse_var_tables.size(); i++) {
    if (ids_table->find(sparse_var_tables[i]) == ids_table->end()) {
      // create empty set for new sparse var
C
Chengmo 已提交
443 444 445 446 447 448
      auto splited_var_nums =
          recv_varname_to_ctx_[sparse_var_tables[i]].splited_var_names.size();
      ids_table->insert(
          std::pair<std::string, std::vector<std::unordered_set<int64_t>>>(
              sparse_var_tables[i],
              std::vector<std::unordered_set<int64_t>>{splited_var_nums}));
449 450 451 452 453 454
    }
    auto *var = scope.FindVar(sparse_var_names[i]);
    auto var_tensor = var->Get<framework::LoDTensor>();
    int element_number = var_tensor.numel();
    int *var_mutable_data = var_tensor.mutable_data<int>(var_tensor.place());
    // insert ids which has not been record
455
    for (int j = 0; j < element_number; j++) {
C
Chengmo 已提交
456 457 458
      auto ep_idx = GetSectionIndex(var_mutable_data[j],
                                    absolute_section_[sparse_var_tables[i]]);
      ids_table->at(sparse_var_tables[i])[ep_idx].insert(var_mutable_data[j]);
459 460 461 462 463
      VLOG(4) << "Sparse var " << sparse_var_tables[i] << " insert "
              << var_mutable_data[j];
    }
  }
  need_push_queue_->Push(ids_table);
C
Chengmo 已提交
464
  auto after_run_send = GetCurrentUS();
465
  VLOG(4) << "run send_op use time " << after_run_send - before_run_send;
466 467 468 469 470 471 472 473
}

void GeoSgdCommunicator::SendThread() {
  VLOG(0) << "SendThread start!";
  auto before_run_training = GetCurrentUS();

  while (running_) {
    std::vector<std::future<void>> task_futures;
474
    task_futures.reserve(send_var_nums_);
475

476
    int wait_times = 0;
477
    while (ids_send_vec_.size() < static_cast<size_t>(geo_need_push_nums_)) {
478 479
      VLOG(4) << "ids_send_vec_ Size: " << ids_send_vec_.size();
      if (need_push_queue_->Size() > 0) {
C
Chengmo 已提交
480
        wait_times = 0;
481 482
        ids_send_vec_.push_back(*(need_push_queue_->Pop()));
        VLOG(4) << "ids_send_vec_ pushed";
C
Chengmo 已提交
483
      } else if (need_push_queue_->Size() == 0) {
484
        VLOG(4) << "wait_times -> " << wait_times;
485
        if (wait_times >= send_wait_times_) {
C
Chengmo 已提交
486 487 488 489 490
          break;
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        wait_times++;
        continue;
491 492 493
      }
    }

494
    if (ids_send_vec_.size() >= static_cast<size_t>(geo_need_push_nums_)) {
495
      auto after_run_training = GetCurrentUS();
496
      VLOG(4) << "run Training use time "
497 498
              << after_run_training - before_run_training;
      before_run_training = GetCurrentUS();
499
      VLOG(4) << "Start send after get need_push_num";
500 501 502

      for (auto &iter : send_varname_to_ctx_) {
        auto &var_name = iter.first;
C
Chengmo 已提交
503 504 505 506 507
        if (var_list_[DeltaVarToVar(var_name)] == true) {
          // sparse var: merge->send->recv
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
508
              VLOG(4) << "ids_send_vec_ size: " << ids_send_vec_.size();
C
Chengmo 已提交
509 510 511 512 513
              auto ids_set =
                  SparseIdsMerge(ids_send_vec_, var_name, splited_var_name);
              SendUpdateSparseVars(var_name, splited_var_name, ids_set);
              RecvUpdateSparseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
514
              VLOG(3) << "run GEO-SGD var " << splited_var_name << " use time "
C
Chengmo 已提交
515 516 517 518
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
519
          }
C
Chengmo 已提交
520
        } else {
521 522 523 524 525 526 527 528 529 530 531 532
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
              SendUpdateDenseVars(var_name, splited_var_name);
              RecvUpdateDenseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
              VLOG(3) << "run GEO-SGD var " << splited_var_name << " use time "
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
          }
C
Chengmo 已提交
533
        }
534
      }
C
Chengmo 已提交
535 536 537 538
      for (auto &task_f : task_futures) {
        task_f.wait();
      }
      ids_send_vec_.clear();
539 540 541 542 543
    }
  }
}

std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
C
Chengmo 已提交
544 545
    const std::vector<SparseIdsMap> &ids_send_vec, const std::string &var_name,
    const std::string &splited_var_name) {
546
  // every batch has some sparse id, merge them into one unoredered_set
547
  VLOG(4) << "Sparse Ids merge var: " << var_name
C
Chengmo 已提交
548
          << " splited var: " << splited_var_name;
549
  auto before_run_ids_merge_ = GetCurrentUS();
C
Chengmo 已提交
550 551
  auto origin_var_name = DeltaVarToVar(var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
552 553
  std::unordered_set<int64_t> ids_set;
  for (auto ids_map : ids_send_vec) {
C
Chengmo 已提交
554
    for (auto id : ids_map[origin_var_name][splited_var_index]) {
555 556 557 558
      ids_set.insert(id);
    }
  }
  auto after_run_ids_merge_ = GetCurrentUS();
559
  VLOG(4) << "run SparseIdsMerge " << splited_var_name << " has nums "
C
Chengmo 已提交
560
          << ids_set.size() << " use time "
561 562 563 564
          << after_run_ids_merge_ - before_run_ids_merge_;
  return ids_set;
}

565 566
void GeoSgdCommunicator::SendUpdateDenseVars(
    const std::string &var_name, const std::string &splited_var_name) {
567 568
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
C
Chengmo 已提交
569 570
  // var_name: param.delta
  auto origin_var_name = DeltaVarToVar(var_name);
571 572 573 574
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  VLOG(4) << "Dense var: " << var_name
          << " 's splited var: " << splited_var_name
          << " splited var index: " << splited_var_index;
575
  auto before_run_send_dense = GetCurrentUS();
576
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
577

C
Chengmo 已提交
578
  auto *var_x = training_scope_->FindVar(origin_var_name);
579 580
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

C
Chengmo 已提交
581
  auto *var_y = old_scope_->FindVar(origin_var_name);
582 583 584
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  auto total_element = var_x_tensor.numel();
  int64_t section = 0;
  int64_t begin_loc = 0;
  int64_t dimension = 0;

  size_t out_num = send_varname_to_ctx_[var_name].height_sections.size();
  if (out_num > 1) {
    section = send_varname_to_ctx_[var_name].height_sections[splited_var_index];
    dims[0] = section;
    begin_loc = absolute_section_[origin_var_name][splited_var_index];
    dimension = total_element / vars_first_dimension_[origin_var_name];
    total_element = section * dimension;
    VLOG(4) << "Dense splited var: " << splited_var_name
            << " section: " << section << " dimension: " << dimension
            << " begin loc: " << begin_loc << " total_element "
            << total_element;
  }
602

603 604 605 606 607 608 609 610 611 612
  auto *var_x_data = var_x_tensor.mutable_data<float>(var_x_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];
  auto *var_y_data = var_y_tensor.mutable_data<float>(var_y_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];
613 614

  // create delta var in delta scope
615 616 617 618 619
  auto *var_z_tensor =
      delta_scope_->Var(splited_var_name)->GetMutable<framework::LoDTensor>();
  var_z_tensor->Resize(dims);
  var_z_tensor->mutable_data<float>(dims, cpu_ctx.GetPlace());
  auto *var_z_data = var_z_tensor->mutable_data<float>(cpu_ctx.GetPlace());
620

621 622 623
  VLOG(4) << "Dense splited var: " << splited_var_name << "var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];
624 625 626

  // calc sub = var_training - var_old
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
627 628 629 630
  blas.VSUB(total_element, var_x_data, var_y_data, var_z_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];
631 632 633

  // calc var_delta = sub / trainer_nums
  float trainer_param = 1.0 / static_cast<float>(trainer_nums_);
634
  blas.SCAL(total_element, trainer_param, var_z_data);
635 636

  // calc var_old += var_delta
637 638 639 640
  blas.VADD(total_element, var_y_data, var_z_data, var_y_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];
641 642

  auto after_run_send_dense = GetCurrentUS();
643
  VLOG(4) << "run send update dense var " << var_name << " use time "
644
          << after_run_send_dense - before_run_send_dense;
C
Chengmo 已提交
645 646

  auto before_send_dense = GetCurrentUS();
647 648 649 650
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_dense = GetCurrentUS();
  VLOG(4) << "send " << splited_var_name << " use time "
          << after_send_dense - before_send_dense;
651 652 653
}

void GeoSgdCommunicator::SendUpdateSparseVars(
C
Chengmo 已提交
654 655
    const std::string &var_name, const std::string &splited_var_name,
    const std::unordered_set<int64_t> &ids_table) {
656 657
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
C
Chengmo 已提交
658 659
  // var_name: param.delta, splited_var_name: param.block0.delta
  // origin_var_name: param
660 661 662
  auto before_run_send_sparse = GetCurrentUS();

  auto ids_num = ids_table.size();
C
Chengmo 已提交
663 664 665 666
  VLOG(4) << "Sparse Ids nums is : " << ids_num;
  auto origin_var_name = DeltaVarToVar(var_name);

  auto *var_x = training_scope_->FindVar(origin_var_name);
667 668
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

C
Chengmo 已提交
669
  auto *var_y = old_scope_.get()->FindVar(origin_var_name);
670 671 672 673 674 675 676 677
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
  auto row_numel = dims[1];

  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

C
Chengmo 已提交
678
  auto *var_z = delta_scope_->Var(splited_var_name);
679 680 681 682 683 684 685
  auto *var_z_select_rows = var_z->GetMutable<framework::SelectedRows>();
  auto *var_z_value = var_z_select_rows->mutable_value();
  var_z_value->Resize({static_cast<int64_t>(ids_num), row_numel});
  auto *z_value = var_z_value->mutable_data<float>(var_x_tensor.place());

  std::vector<int64_t> new_rows;
  new_rows.insert(new_rows.begin(), ids_table.begin(), ids_table.end());
C
Chengmo 已提交
686 687 688 689

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  float avg = 1 / static_cast<float>(trainer_nums_);
690
  for (size_t y = 0; y < new_rows.size(); y++) {
C
Chengmo 已提交
691 692 693 694 695 696 697
    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    std::vector<float> row_delta(row_numel, 0);
698
    blas.VSUB(row_numel, x_val, y_val, row_delta.data());
C
Chengmo 已提交
699 700 701
    blas.SCAL(row_numel, avg, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), y_val, y_val);
    blas.VCOPY(row_numel, row_delta.data(), z_val);
702
  }
C
Chengmo 已提交
703

704
  auto after_run_send_sparse = GetCurrentUS();
705
  VLOG(4) << "run send update sparse var " << splited_var_name << " use time "
706
          << after_run_send_sparse - before_run_send_sparse;
C
Chengmo 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  std::vector<int64_t> send_rows;
  send_rows.reserve(new_rows.size());
  for (auto idx : new_rows) {
    send_rows.push_back(idx -
                        absolute_section_[origin_var_name][splited_var_index]);
  }
  var_z_select_rows->set_rows(send_rows);
  var_z_select_rows->set_height(
      send_varname_to_ctx_[var_name].height_sections[splited_var_index]);

  auto before_send_sparse = GetCurrentUS();
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_sparse = GetCurrentUS();
722
  VLOG(4) << "send " << splited_var_name << " has nums " << new_rows.size()
C
Chengmo 已提交
723
          << " use time " << after_send_sparse - before_send_sparse;
724 725
}

726 727
void GeoSgdCommunicator::RecvUpdateDenseVars(
    const std::string &var_name, const std::string &splited_var_name) {
728 729
  // calc var_training += var_pserver - var_old
  // calc var_old = var_pserver
C
Chengmo 已提交
730 731 732 733
  // var_name: param.delta

  // step1: recv dense var from pserver
  auto origin_var_name = DeltaVarToVar(var_name);
734 735 736
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
C
Chengmo 已提交
737 738

  auto before_run_recv = GetCurrentUS();
739 740 741 742
  VLOG(4) << "Dense recv origin_var_name: " << origin_var_name
          << " origin_splited_var_name: " << origin_splited_var_name
          << " splited_var_index: " << splited_var_index;
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
C
Chengmo 已提交
743
  auto after_run_recv = GetCurrentUS();
744
  VLOG(4) << "recv var " << origin_splited_var_name << " use time "
C
Chengmo 已提交
745 746 747 748 749 750 751 752 753 754
          << after_run_recv - before_run_recv;

  // step2: update dense var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_->FindVar(origin_var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

755
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
C
Chengmo 已提交
756
  auto var_z_tensor = var_z->Get<framework::LoDTensor>();
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
  auto dims = var_z_tensor.dims();
  auto total_element = var_z_tensor.numel();

  int64_t section = 0;
  int64_t begin_loc = 0;
  int64_t dimension = 0;
  size_t out_num = recv_varname_to_ctx_[origin_var_name].height_sections.size();
  if (out_num > 1) {
    section = dims[0];
    begin_loc = absolute_section_[origin_var_name][splited_var_index];
    dimension = total_element / section;
    VLOG(4) << "Dense splited var: " << splited_var_name
            << " section: " << section << " dimension: " << dimension
            << " begin loc: " << begin_loc << " total_element "
            << total_element;
  }

  auto *var_x_data = var_x_tensor.mutable_data<float>(var_x_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];

  auto *var_y_data = var_y_tensor.mutable_data<float>(var_y_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];

  auto *var_z_data = var_z_tensor.mutable_data<float>(cpu_ctx.GetPlace());
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];

  auto *var_y_sub_tensor = old_scope_->Var(origin_splited_var_name)
                               ->GetMutable<framework::LoDTensor>();
  var_y_sub_tensor->Resize(dims);
  var_y_sub_tensor->mutable_data<float>(dims, cpu_ctx.GetPlace());
  auto *var_y_sub_data =
      var_y_sub_tensor->mutable_data<float>(cpu_ctx.GetPlace());

  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_sub_data[0] "
          << var_y_sub_data[0] << " var_y_sub_data[end] "
          << var_y_sub_data[total_element - 1];
C
Chengmo 已提交
801 802

  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
803

C
Chengmo 已提交
804
  // calc sub = pserver - old
805 806 807 808 809 810 811 812 813 814 815
  blas.VSUB(total_element, var_z_data, var_y_data, var_y_sub_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_sub_data[0] "
          << var_y_sub_data[0] << " var_y_sub_data[end] "
          << var_y_sub_data[total_element - 1];

  // calc train += sub
  blas.VADD(total_element, var_x_data, var_y_sub_data, var_x_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];

C
Chengmo 已提交
816
  // calc old = pserver
817 818 819 820 821
  blas.VCOPY(total_element, var_z_data, var_y_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];

C
Chengmo 已提交
822
  auto after_run_update = GetCurrentUS();
823
  VLOG(4) << "dense var update " << origin_splited_var_name << " use time "
C
Chengmo 已提交
824 825 826 827 828 829 830 831 832 833
          << after_run_update - before_run_update;
}

void GeoSgdCommunicator::RecvUpdateSparseVars(
    const std::string &var_name, const std::string &splited_var_name) {
  // step 1: recv splited var from pserver
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto origin_var_name = DeltaVarToVar(var_name);
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);

834
  auto before_run_recv = GetCurrentUS();
C
Chengmo 已提交
835 836
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
  auto after_run_recv = GetCurrentUS();
837
  VLOG(4) << "recv var " << origin_splited_var_name << " use time "
C
Chengmo 已提交
838
          << after_run_recv - before_run_recv;
839

C
Chengmo 已提交
840 841 842
  // step 2: update sparse var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
843
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
C
Chengmo 已提交
844
  auto dims = var_x_tensor.dims();
845 846
  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());

C
Chengmo 已提交
847
  auto *var_y = old_scope_->FindVar(origin_var_name);
848 849 850
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

C
Chengmo 已提交
851 852 853 854 855 856 857 858 859 860
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
  auto var_z_slr = var_z->GetMutable<framework::SelectedRows>();
  auto row_size = var_z_slr->rows().size();

  std::vector<int64_t> new_rows;
  new_rows.reserve(row_size);

  for (auto ids : var_z_slr->rows()) {
    new_rows.push_back(ids +
                       absolute_section_[origin_var_name][splited_var_index]);
861 862
  }

C
Chengmo 已提交
863 864 865 866 867 868
  auto *new_value = var_z_slr->mutable_value();
  auto row_numel = dims[1];
  auto *z_value = new_value->mutable_data<float>(var_x_tensor.place());

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
869
  for (size_t y = 0; y < new_rows.size(); y++) {
C
Chengmo 已提交
870 871 872 873 874 875 876 877
    std::vector<float> row_delta(row_numel, 0);

    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

878
    blas.VSUB(row_numel, z_val, y_val, row_delta.data());
C
Chengmo 已提交
879 880 881 882 883
    blas.VADD(row_numel, row_delta.data(), x_val, x_val);
    blas.VCOPY(row_numel, z_val, y_val);
  }

  auto after_run_update = GetCurrentUS();
884
  VLOG(4) << "sparse var recv update " << origin_splited_var_name << " has num "
C
Chengmo 已提交
885 886
          << new_rows.size() << " use time "
          << after_run_update - before_run_update;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
}

void GeoSgdCommunicator::GeoSgdSparseParamInit(framework::Scope *scope_x,
                                               framework::Scope *scope_y,
                                               const std::string var_name) {
  // create selectedrows var from lodtensor var info
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);

  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  auto *var_y_select_rows = var_y->GetMutable<framework::SelectedRows>();

  auto dims = var_x_tensor.dims();
  auto rows = dims[0];
  auto row_numel = dims[1];

  var_y_select_rows->set_height(rows);
  std::vector<int64_t> new_rows{};
  var_y_select_rows->set_rows(new_rows);
  auto *var_y_value = var_y_select_rows->mutable_value();
  var_y_value->Resize({rows, row_numel});
  var_y_value->mutable_data<float>(var_x_tensor.place());
}

void GeoSgdCommunicator::GeoSgdDenseParamInit(framework::Scope *scope_x,
                                              framework::Scope *scope_y,
                                              const std::string var_name) {
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);
  framework::CopyVariable(*var_x, var_y);
}

C
Chengmo 已提交
919 920 921 922 923 924 925 926 927 928 929
void GeoSgdCommunicator::RpcSend(const std::string &origin_var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto trainer_id = send_varname_to_ctx_[origin_var_name].trainer_id;
  auto endpoint =
      send_varname_to_ctx_[origin_var_name].epmap[splited_var_index];

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_send = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
930 931 932
  auto handle = rpc_client->AsyncSendVar(endpoint, cpu_ctx_send,
                                         *delta_scope_.get(), splited_var_name);
  handle->Wait();
C
Chengmo 已提交
933 934 935 936 937 938 939 940 941 942 943 944
}

void GeoSgdCommunicator::RpcRecv(const std::string &var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto train_id = recv_varname_to_ctx_[var_name].trainer_id;
  auto endpoint = recv_varname_to_ctx_[var_name].epmap[splited_var_index];
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_recv = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(train_id);
  pserver_scope_->Var(splited_var_name);
945 946 947 948
  auto handle = rpc_client->AsyncGetVar(endpoint, cpu_ctx_recv,
                                        *pserver_scope_.get(), splited_var_name,
                                        splited_var_name, splited_var_name);
  handle->Wait();
C
Chengmo 已提交
949 950 951 952
}

void GeoSgdCommunicator::Recv() {}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
void HalfAsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                     const RpcCtxMap &recv_varname_to_ctx,
                                     Scope *recv_scope) {
  VLOG(0) << "HalfAsyncCommunicator Initializing";
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    }
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    consume_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
  }
}

void HalfAsyncCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *param_scope) {
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
          send_var_name, send_varnames, epmap, height_section, trainer_id);
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
      PADDLE_ENFORCE_GT(do_not_run, 0,
                        platform::errors::InvalidArgument(
                            "recv op's attr `do_not_run` must be True!"));
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::HalfAsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

HalfAsyncCommunicator::~HalfAsyncCommunicator() {
  running_ = false;
  if (consume_thread_) consume_thread_->join();
}

void HalfAsyncCommunicator::ConsumeThread() {
  VLOG(3) << "ConsumeThread start!";
  while (running_) {
    while (running_) {
      if (barrier_counter_.load() >= barrier_trigger_.load()) {
        break;
      } else {
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
      }
    }

    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
    VLOG(3) << "run send graph";
    auto before_run_send_graph = GetCurrentUS();
    for (auto &iter : send_varname_to_queue_) {
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
      if (var_queue->Size() > 0) {
        auto send_task = [this, &var_name, &var_queue] {
          VLOG(3) << var_name << " merge and send";
          std::vector<std::shared_ptr<Variable>> vars;
          size_t merged_var_num = 0;
          size_t wait_times = 0;
          while (merged_var_num < static_cast<size_t>(max_merge_var_num_)) {
            if (var_queue->Size() == 0) {
              VLOG(3) << "wait_times -> " << wait_times;
              if (wait_times >= static_cast<size_t>(send_wait_times_)) {
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;
              vars.push_back(var_queue->Pop());
              merged_var_num++;
            }
          }
          auto before_merge = GetCurrentUS();

          MergeVars<float>(var_name, vars, send_scope_.get(), false);

          auto after_merge = GetCurrentUS();
          VLOG(3) << "merge " << merged_var_num << " " << var_name
                  << " use time " << after_merge - before_merge;

          auto send_functor = distributed::ParameterSend<float>();
          auto &ctx = send_varname_to_ctx_.at(var_name);
          send_functor(ctx, *send_scope_, true, 1);

          auto after_send = GetCurrentUS();
          VLOG(3) << "send " << var_name << " use time "
                  << after_send - after_merge;
        };
        task_futures.emplace_back(
            consume_threadpool_->enqueue(std::move(send_task)));
      } else {
        VLOG(4) << var_name << " queue empty";
      }
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
    }
    auto after_run_send_graph = GetCurrentUS();

    VLOG(3) << "run send graph use time "
            << after_run_send_graph - before_run_send_graph;
    Recv();

    BarrierWeakUp();
  }
  VLOG(0) << "communicator stopped, send thread exit";
}

void HalfAsyncCommunicator::Send(const std::vector<std::string> &var_names,
                                 const std::vector<std::string> &var_tables,
                                 const framework::Scope &scope) {
  PADDLE_ENFORCE_EQ(
      var_names.size(), 1,
      platform::errors::InvalidArgument("var_names.size() == 1 is permitted"));
  auto var_name = var_names[0];
  VLOG(3) << "communicator send " << var_name;
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE_EQ(
      grad_var->IsInitialized(), true,
      platform::errors::InvalidArgument("grad var should is not initialized."));
  auto tmp_grad_var = std::make_shared<Variable>();
  framework::CopyVariable(*grad_var, tmp_grad_var.get());
  auto &queue = send_varname_to_queue_.at(var_name);
  VLOG(3) << "send " << var_name << " queue size " << queue->Size();
  queue->Push(tmp_grad_var);
}

void HalfAsyncCommunicator::Recv() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
      recv_functor(iter.second, *recv_scope_);
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
  VLOG(3) << "run recv graph use time " << after_recv - before_send;
}

void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;
  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
  }
}

void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void HalfAsyncCommunicator::Start() {
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";

    BarrierTriggerReset(max_merge_var_num_);
    running_ = true;
    consume_thread_.reset(new std::thread(
        std::bind(&HalfAsyncCommunicator::ConsumeThread, this)));
  }
}

void HalfAsyncCommunicator::Stop() {
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (consume_thread_) {
      VLOG(4) << "stop send thread";
      consume_thread_->join();
      consume_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Communicator stop done";
}
1201

Q
Qiao Longfei 已提交
1202 1203 1204
}  // namespace distributed
}  // namespace operators
}  // namespace paddle