control_flow.py 167.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
H
hong 已提交
21
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
W
wanghuancoder 已提交
32
from paddle import _C_ops
D
dzhwinter 已提交
33

Q
QI JUN 已提交
34
__all__ = [
W
Wu Yi 已提交
35
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
36
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
37
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
38 39
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
40 41
]

Y
Yu Yang 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
60 61 62 63
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

64 65 66 67 68 69
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
89 90 91 92 93 94
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
95

96 97 98 99 100 101 102 103 104
    out = helper.create_variable(dtype=input_dtype,
                                 shape=input_shape,
                                 type=input_type)
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
105 106 107
    return out


108 109
def select_input_with_buildin_type(inputs, mask):
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
110
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_var_like
111 112
    false_var, true_var = inputs

113 114 115 116 117 118
    if isinstance(false_var, UndefinedVar) and isinstance(
            true_var, UndefinedVar):
        """ None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.
        """
        return None

119 120 121
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
        return select_input(inputs, mask)

122 123
    elif (isinstance(false_var, (support_ret_buildin_type))
          and isinstance(false_var, type(true_var))):
124 125 126 127
        if false_var == true_var:
            return false_var
        else:
            inputs = [
128 129
                to_static_variable(false_var),
                to_static_variable(true_var)
130 131
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
132 133 134 135
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
136 137 138 139 140
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    elif ((isinstance(false_var, UndefinedVar)
           and isinstance(true_var, (Variable, ) + support_ret_buildin_type))
          or (isinstance(true_var, UndefinedVar)
              and isinstance(false_var,
                             (Variable, ) + support_ret_buildin_type))):

        def create_var_if_not_undefined_var(a):
            if isinstance(a, UndefinedVar): return a
            return to_static_variable(a)

        def create_like_if_undefined_var(a, b):
            if isinstance(a, UndefinedVar): return create_undefined_var_like(b)
            return a

        # TODO(xiongkun): add warning here.
        true_var, false_var = create_var_if_not_undefined_var(
            true_var), create_var_if_not_undefined_var(false_var)
        inputs = [
            create_like_if_undefined_var(false_var, true_var),
            create_like_if_undefined_var(true_var, false_var)
        ]
162 163 164 165 166 167 168 169 170
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))

    return select_input(inputs, mask)


171
def split_lod_tensor(input, mask, level=0):
172 173 174 175
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
176 177
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
178 179

    Args:
180
        input(Variable|tuple|list|None): The input tensor that contains complete
181
                                lod information needed to construct the output.
182
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
183
        level(int): The specific lod level to split.
184 185

    Returns:
Q
qiaolongfei 已提交
186 187 188 189
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
190 191 192 193

    Examples:
        .. code-block:: python

194
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
195
          x = fluid.layers.data(name='x', shape=[1])
196 197
          x.persistable = True

Q
qiaolongfei 已提交
198
          y = fluid.layers.data(name='y', shape=[1])
199 200
          y.persistable = True

Q
qiaolongfei 已提交
201
          out_true, out_false = fluid.layers.split_lod_tensor(
202
                input=x, mask=y, level=level)
203

204
    """
205 206 207 208
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
209
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
210 211
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
212 213 214 215 216 217 218 219 220 221
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
222 223 224
    return out_true, out_false


225
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
226 227 228 229 230
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
231 232 233
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
234 235

    Args:
236 237 238
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
239
                            lod information needed to construct the output.
240
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
241
        level(int): The specific lod level to merge.
242 243 244 245 246 247 248

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

249
          import paddle.fluid as fluid
250 251 252 253 254 255 256 257 258 259 260 261
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
262
    helper = LayerHelper('merge_lod_tensor', **locals())
263 264 265 266 267 268 269
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
270
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
271 272 273 274 275 276 277 278 279
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
280 281 282
    return out


283
@static_only
Y
Yan Chunwei 已提交
284 285 286
def Print(input,
          first_n=-1,
          message=None,
287
          summarize=20,
Y
Yan Chunwei 已提交
288 289 290
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
291
          print_tensor_layout=True,
Y
yangyaming 已提交
292 293
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
294
    '''
295 296
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
297 298 299 300 301 302 303 304 305
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
306
        input (Variable): A Tensor to print.
307
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
308
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
309 310
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
311 312 313
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
314
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
315
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
316
        print_phase (str): Which phase to displace, including 'forward',
317 318 319
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
320 321

    Returns:
322
        Variable: Output tensor.
Y
Yan Chunwei 已提交
323

324 325 326 327
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
328

Y
Yan Chunwei 已提交
329 330
    Examples:
        .. code-block:: python
331
           
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
           import paddle

           paddle.enable_static()
        
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
350
    '''
351 352 353
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
354

355 356
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
357 358 359 360 361 362 363 364 365 366 367 368 369 370
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
371
    return output
Y
Yan Chunwei 已提交
372 373


H
Huihuang Zheng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

437 438 439 440 441 442
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
443 444 445 446

    return op


Y
Yu Yang 已提交
447 448
class BlockGuard(object):
    """
449 450 451 452
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
453 454
    """

455 456
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
457
            raise TypeError("BlockGuard takes a program")
458
        self.main_program = main_program
Y
Yu Yang 已提交
459 460

    def __enter__(self):
W
Wu Yi 已提交
461
        self.main_program._create_block()
Y
Yu Yang 已提交
462 463

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
464
        self.main_program._rollback()
Y
Yu Yang 已提交
465 466 467 468 469
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
470 471 472 473 474
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
475 476
    """

Y
Yu Yang 已提交
477
    def __init__(self, rnn):
X
Xin Pan 已提交
478
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
479
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
480
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
481 482 483 484
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
485
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
486 487

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
488 489
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
490
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
491
        self.rnn._complete_op()
492 493
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
494 495 496 497


class StaticRNNMemoryLink(object):
    """
498 499 500 501
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
502 503 504 505 506 507 508 509 510


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
511 512 513 514 515 516 517 518 519
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
520
    """
521 522
    :api_attr: Static Graph

523 524
    StaticRNN class.

525 526 527 528 529 530 531
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
532 533

    Examples:
534 535 536 537 538 539
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
540 541
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
542 543 544 545 546
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
547
            # transform batch size to dim 1
548 549 550 551
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
552
                # mark created x_emb as input, each step process a word
553
                word = rnn.step_input(x_emb)
554
                # create prev memory parameter, batch size comes from word
555 556
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
557 558 559
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
560
                rnn.step_output(hidden)
561
            # get StaticrNN final output
562
            result = rnn()
C
chengduo 已提交
563

564
    """
Y
Yu Yang 已提交
565 566 567 568
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

569
    def __init__(self, name=None):
570
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
571
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
572 573 574 575 576 577 578 579
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
580
        """
581 582
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
583
        """
Y
Yang Yang 已提交
584
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
585 586 587 588 589

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

590 591 592 593 594 595 596
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
597
        """
C
chengduo 已提交
598 599 600
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
601 602
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
603

604
        Args:
605
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
606 607
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
608 609 610 611 612 613 614
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
615 616

        Returns:
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
648 649
            .. code-block:: python

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

673
        """
Y
Yu Yang 已提交
674
        self._assert_in_rnn_block_('memory')
675 676 677 678 679 680
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
681
        if init is None:
682
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
683
                raise ValueError(
684
                    "if init is None, memory at least need shape and batch_ref")
685
            parent_block = self._parent_block()
686
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
687
                [self.helper.name, "memory_boot"]))
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
703 704 705 706

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
707 708
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
709
                dtype=init.dtype,
Y
Yu Yang 已提交
710
                shape=init.shape)
711 712
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
713 714 715
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
716 717 718 719 720 721 722 723
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
753
        """
Y
Yu Yang 已提交
754
        self._assert_in_rnn_block_('step_input')
755
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
756
        if self.seq_len is None:
Y
Yu Yang 已提交
757
            self.seq_len = x.shape[0]
758
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
759 760
            raise ValueError("Static RNN only take fix seq_len input")

761 762 763 764
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
765 766 767 768
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
769 770 771 772 773 774 775 776
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
808
        """
Y
Yu Yang 已提交
809
        self._assert_in_rnn_block_('step_output')
810
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
811

X
Xin Pan 已提交
812
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
813 814 815 816
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
817

818 819 820 821
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
822 823 824 825

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
826 827 828 829
        """
        Mark the StaticRNN output variables.

        Args:
830
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
831 832 833

        Returns:
            None
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
865
        """
Y
Yu Yang 已提交
866 867 868 869
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
870
        """
871
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
872 873 874

        Args:
            mem(Variable): the memory variable.
875
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
876
                           var and mem should have same dims and data type.
C
chengduo 已提交
877 878 879

        Returns:
            None
880

C
chengduo 已提交
881
        """
882 883
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
884 885
        self.memories[mem.name].mem = var

886
    def _parent_block(self):
887
        prog = self.helper.main_program
Y
Yu Yang 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

903
    def _complete_op(self):
904 905
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
906
        parent_block = self._parent_block()
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
921 922 923
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
924 925 926 927 928 929 930 931
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

932 933 934
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
935 936 937 938 939 940 941

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
942
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
943 944 945
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
946
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
947 948
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
949 950
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
951 952
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
953 954
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
955 956 957 958
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
959 960 961

            memories.append(new_mem.name)

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
978 979


Y
Yang Yang(Tony) 已提交
980
class WhileGuard(BlockGuard):
981

Y
Yang Yang(Tony) 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
996
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
997 998 999
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1023 1024 1025 1026 1027 1028 1029 1030
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1031 1032
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1057
class While(object):
X
Xin Pan 已提交
1058
    """
1059 1060
    :api_attr: Static Graph
    
1061
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1062

1063 1064 1065 1066
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1067 1068 1069 1070 1071 1072
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1073
    Args:
1074
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1075
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1076
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1077

1078
    Examples 1:
X
Xin Pan 已提交
1079
          .. code-block:: python
1080 1081
            
            import paddle.fluid as fluid
1082 1083 1084 1085 1086
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1087

1088
            cond = fluid.layers.less_than(x=i, y=loop_len)
1089
            while_op = fluid.layers.While(cond=cond)
1090
            with while_op.block():
1091
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1092
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1093 1094 1095 1096 1097

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1127 1128
    """

Y
Yang Yang(Tony) 已提交
1129 1130 1131 1132
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1133
    def __init__(self, cond, is_test=False, name=None):
1134
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1135
        self.status = While.BEFORE_WHILE_BLOCK
1136
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1137
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1138
            raise TypeError(
1139
                "condition expected shape as [1], but given shape as {0}.".
1140
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1141
        self.cond_var = cond
C
chengduo 已提交
1142
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1143 1144 1145 1146

    def block(self):
        return WhileGuard(self)

1147
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1148 1149
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1150 1151
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1152 1153 1154

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1155 1156
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1157 1158 1159

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1160 1161 1162
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1163

1164 1165
        x_name_list |= set(map(lambda x: x.name, out_vars))

Y
Yang Yang(Tony) 已提交
1166 1167 1168 1169 1170 1171
        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1172 1173
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1174 1175
                'Condition': [self.cond_var]
            },
1176 1177 1178 1179 1180 1181 1182 1183
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1184 1185


1186 1187 1188
support_ret_buildin_type = (bool, float, six.integer_types)


1189
def assign_skip_lod_tensor_array(input, output):
1190
    """
1191
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1192
    """
1193
    if not isinstance(input, (Variable, core.VarBase)):
1194 1195
        if isinstance(output, Variable) and isinstance(
                input, support_ret_buildin_type):
1196 1197 1198
            assign(input, output)
        else:
            output = input
1199 1200
        return

1201 1202
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1203 1204
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1205 1206 1207 1208
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
        assign(input, output)
1209 1210


G
guofei 已提交
1211
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1212
    """
1213 1214
    :api_attr: Static Graph

G
guofei 已提交
1215 1216
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1217 1218 1219 1220
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1221
    Args:
1222 1223 1224 1225 1226
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1227
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1228 1229
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1230

G
guofei 已提交
1231
    Returns:
C
Chen Long 已提交
1232
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1233 1234 1235 1236

    Examples:
        .. code-block:: python

1237 1238 1239
            import paddle
            paddle.enable_static()

1240 1241
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1242

1243 1244 1245
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1246

C
Chen Long 已提交
1247 1248 1249 1250 1251 1252
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
G
guofei 已提交
1253
                
C
Chen Long 已提交
1254
                exe = paddle.static.Executor(paddle.CPUPlace())
1255
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1256 1257 1258 1259 1260 1261 1262 1263
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1264
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1265 1266 1267 1268
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1269 1270
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1271 1272
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1273
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1274 1275
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1276
    if _non_static_mode():
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1287
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1288 1289
        return loop_vars

G
guofei 已提交
1290
    while_loop_block = While(pre_cond, is_test, name)
1291
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1292
    with while_loop_block.block():
1293 1294 1295 1296 1297 1298 1299 1300 1301
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1302 1303
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1304
        try:
1305
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1306 1307
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1308 1309 1310
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1311
        now_cond = cond(*output_vars)
1312
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1313 1314 1315 1316
        assign(now_cond, pre_cond)
    return loop_vars


1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
def _deal_with_undefined_var(output_vars, loop_vars):
    """ Deal with undefined var cases, We create undefined variable based on the results of body().
        In Dy2Static, we use undefined var to represent the var created in control flow. This function
        expand the loop_vars and replace original loop_vars.
        1. UndefinedVar = Variable      # create a variable
        2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
        3. UndefinedVar = List(int)     # create a list of variable
        4. UndefinedVar = value         # create a variable
    """
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_variable

    def create_var_like(o_var):
        if isinstance(o_var,
                      (Variable, ) + support_ret_buildin_type) or o_var is None:
            return create_undefined_variable()
1332 1333 1334 1335 1336
        if is_sequence(o_var):
            """ 
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1350
def lod_rank_table(x, level=0):
1351 1352
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1353 1354
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1355
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1356
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1357 1358
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1359 1360 1361 1362

        .. code-block:: text

            x is a LoDTensor:
1363 1364
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1365 1366
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1367 1368 1369
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1370

Y
yangyaming 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1380 1381 1382 1383

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1384 1385
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1386 1387 1388 1389 1390 1391 1392

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1393
            import paddle.fluid as fluid
Y
yangyaming 已提交
1394
            x = fluid.layers.data(name='x', shape=[10],
1395
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1396
            out = layers.lod_rank_table(x=x, level=0)
1397
    """
1398 1399 1400 1401 1402 1403
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1404
    helper = LayerHelper("lod_rank_table", **locals())
1405 1406 1407 1408 1409 1410
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1411
    return table
Y
Yu Yang 已提交
1412 1413


Y
yuyang18 已提交
1414
@templatedoc()
1415
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1416 1417 1418 1419 1420 1421 1422 1423
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1424 1425

    Args:
Y
yuyang18 已提交
1426
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1427 1428

    Returns:
Y
yuyang18 已提交
1429
        ${out_comment}.
F
fengjiayi 已提交
1430 1431
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1432
    res = helper.create_variable_for_type_inference(dtype="int64")
1433 1434 1435
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1436 1437 1438
    return res


1439
def lod_tensor_to_array(x, table):
1440
    """
F
fengjiayi 已提交
1441 1442
    Convert a LoDTensor to a LoDTensorArray.

1443 1444 1445 1446 1447
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1448
    Users should not use it directly.
1449 1450

    Args:
F
fengjiayi 已提交
1451
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1452 1453
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1454
                                descending order. It is generally generated
F
fengjiayi 已提交
1455
                                by `layers.lod_rank_table()` API.
1456 1457

    Returns:
F
fengjiayi 已提交
1458
        Variable: The LoDTensorArray that has been converted from the input tensor.
1459 1460 1461 1462

    Examples:
        .. code-block:: python

1463
          import paddle.fluid as fluid
1464 1465 1466
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1467
    """
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1478 1479
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1480
        name=unique_name.generate("lod_tensor_to_array"),
1481
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1482
        dtype=x.dtype)
1483 1484 1485 1486 1487 1488
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1489 1490 1491
    return array


1492
def array_to_lod_tensor(x, table):
1493
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1494 1495

    Args:
1496
        x (Variable|list): The lod tensor array to be converted to a tensor.
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1508
          import paddle.fluid as fluid
1509 1510 1511 1512
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1513
    """
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1525
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1526
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1527 1528 1529 1530 1531 1532
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1533 1534 1535
    return tmp


1536
def increment(x, value=1.0, in_place=True):
1537
    """
1538 1539
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1540

1541
    Parameters:
T
tianshuo78520a 已提交
1542
        x (Variable): A tensor that must always contain only one element, its data type supports
1543 1544 1545
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1546 1547

    Returns:
1548
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1549 1550 1551 1552

    Examples:
        .. code-block:: python

1553
          import paddle.fluid as fluid
1554 1555
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1556
    """
1557 1558
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1559
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1560
    if not in_place:
X
Xin Pan 已提交
1561
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1562 1563
    else:
        out = x
1564 1565 1566 1567
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1568
    return out
Y
Yu Yang 已提交
1569 1570


1571
def array_write(x, i, array=None):
1572
    """
1573 1574 1575 1576
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1577 1578

    Args:
1579 1580 1581 1582 1583 1584 1585
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1586

1587
    Returns:
1588
        Variable: The input ``array`` after ``x`` is written into.
1589 1590

    Examples:
D
dzhwinter 已提交
1591
        .. code-block:: python
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1620
    """
J
Jiabin Yang 已提交
1621
    if _non_static_mode():
1622 1623 1624 1625 1626 1627 1628 1629 1630
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1631
        i = i.numpy().item(0)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1646 1647
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1648
    helper = LayerHelper('array_write', **locals())
1649 1650
    if array is not None:
        if not isinstance(
1651 1652
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1653 1654
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1655 1656 1657 1658
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1659
            dtype=x.dtype)
1660 1661 1662 1663 1664 1665
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1666 1667 1668
    return array


1669
def create_array(dtype, initialized_list=None):
1670
    """
1671 1672 1673 1674
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1675 1676

    Args:
1677 1678
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1679 1680
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1681 1682

    Returns:
1683
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1684 1685 1686 1687

    Examples:
        .. code-block:: python

1688
          import paddle.fluid as fluid
1689
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1690 1691

    """
1692 1693 1694 1695
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1696 1697
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1698 1699 1700 1701 1702 1703
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1704 1705
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1706

J
Jiabin Yang 已提交
1707
    if _non_static_mode():
1708
        return array
1709

Y
Yang Yang(Tony) 已提交
1710
    helper = LayerHelper("array", **locals())
1711
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1712 1713 1714 1715
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1716 1717 1718 1719 1720
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1721

Y
yuyang18 已提交
1722
@templatedoc()
W
wawltor 已提交
1723
def less_than(x, y, force_cpu=None, cond=None, name=None):
1724
    """
1725

Y
yuyang18 已提交
1726
    ${comment}
1727 1728

    Args:
N
Noel 已提交
1729 1730
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1731
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1732
        cond(Tensor, optional): Optional output which can be any created Tensor
1733
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1734
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1735 1736
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1737
    Returns:
Y
yuyang18 已提交
1738
        ${out_comment}.
1739 1740 1741 1742

    Examples:
        .. code-block:: python

N
Noel 已提交
1743 1744 1745 1746 1747 1748 1749
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1750
    """
1751 1752 1753 1754 1755 1756 1757 1758 1759
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1760 1761
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1762
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1763 1764
        cond.stop_gradient = True

Y
yuyang18 已提交
1765 1766 1767 1768
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1769 1770 1771 1772 1773 1774 1775
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1776 1777 1778
    return cond


Z
zhoukunsheng 已提交
1779
@templatedoc()
W
wawltor 已提交
1780
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1781
    """
1782 1783 1784 1785
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1786
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1787 1788

    Args:
1789 1790
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1791 1792
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1793 1794
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1795 1796

    Returns:
1797
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1798 1799 1800 1801

    Examples:
        .. code-block:: python

1802
          import paddle.fluid as fluid
1803 1804 1805 1806 1807 1808
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1809
    """
1810 1811 1812 1813 1814
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1815
        check_type(cond, "cond", Variable, "less_equal")
1816

Z
zhoukunsheng 已提交
1817 1818 1819 1820 1821 1822 1823
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1824 1825 1826 1827 1828 1829 1830
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1831 1832 1833 1834
    return cond


@templatedoc()
W
wawltor 已提交
1835
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1836
    """
1837 1838 1839 1840
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1841
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1842 1843

    Args:
1844 1845
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1846 1847
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1848 1849
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1850 1851

    Returns:
1852
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1853 1854 1855 1856

    Examples:
        .. code-block:: python

1857
          import paddle.fluid as fluid
1858 1859 1860 1861 1862
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1863
    """
1864 1865 1866 1867 1868
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1869
        check_type(cond, "cond", Variable, "greater_than")
1870

Z
zhoukunsheng 已提交
1871 1872 1873 1874 1875 1876 1877
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1878 1879 1880
    if in_dygraph_mode():
        return _C_ops.final_state_greater_than(x, y, -1)
    else:
1881 1882 1883 1884 1885 1886 1887
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1888
        return cond
Z
zhoukunsheng 已提交
1889 1890 1891


@templatedoc()
W
wawltor 已提交
1892
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1893
    """
1894 1895 1896 1897
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1898
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1899 1900

    Args:
1901 1902
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1903 1904
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1905 1906
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1907 1908

    Returns:
1909
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1910 1911 1912 1913

    Examples:
        .. code-block:: python

1914
          import paddle.fluid as fluid
1915 1916 1917 1918 1919 1920
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1921

Z
zhoukunsheng 已提交
1922
    """
1923 1924 1925 1926 1927
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1928
        check_type(cond, "cond", Variable, "greater_equal")
1929

Z
zhoukunsheng 已提交
1930 1931 1932 1933 1934 1935 1936
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1937 1938 1939 1940 1941 1942 1943
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1944 1945 1946
    return cond


W
wawltor 已提交
1947
def equal(x, y, cond=None, name=None):
1948 1949 1950 1951
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1952 1953 1954 1955 1956
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1957 1958
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1959 1960

    Returns:
W
wangchaochaohu 已提交
1961 1962
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1963 1964 1965 1966

    Examples:
        .. code-block:: python

1967
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1968 1969 1970 1971 1972 1973 1974
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1975
    """
1976 1977 1978 1979 1980
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
1981
        check_type(cond, "cond", Variable, "equal")
1982

1983 1984
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1985
        cond = helper.create_variable_for_type_inference(dtype='bool')
1986 1987
        cond.stop_gradient = True

1988 1989 1990 1991 1992 1993
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
1994 1995 1996
    return cond


W
wawltor 已提交
1997
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1998
    """
1999 2000 2001 2002
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

2003
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2004 2005

    Args:
2006 2007
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2008 2009
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2010 2011
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2012 2013

    Returns:
2014
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2015 2016 2017 2018

    Examples:
        .. code-block:: python

2019 2020 2021 2022
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2023 2024
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2025 2026 2027 2028 2029
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
2030
        check_type(cond, "cond", Variable, "not_equal")
2031

Z
zhoukunsheng 已提交
2032 2033 2034 2035 2036
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2037 2038 2039 2040 2041 2042
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
2043 2044 2045
    return cond


2046
def array_read(array, i):
2047
    """
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2063

K
kavyasrinet 已提交
2064
    Args:
2065 2066 2067
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2068

K
kavyasrinet 已提交
2069
    Returns:
2070
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2071

K
kavyasrinet 已提交
2072
    Examples:
2073 2074
        .. code-block:: python

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2106
    """
J
Jiabin Yang 已提交
2107
    if _non_static_mode():
2108 2109 2110 2111 2112 2113 2114 2115 2116
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2117
        i = i.numpy().item(0)
2118 2119
        return array[i]

2120
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2121 2122 2123 2124 2125
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2126
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2127 2128 2129 2130 2131 2132
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2133
    return out
Y
Yang Yu 已提交
2134 2135


2136
def shrink_memory(x, i, table):
2137
    """
Y
yuyang18 已提交
2138
    This function creates an operator to shrink rnn memory using the RankTable
2139
    as mentioned in the input parameter.
Y
yuyang18 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2160
    """
Y
Yang Yu 已提交
2161
    helper = LayerHelper('shrink_memory', **locals())
2162 2163 2164
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2165
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2166 2167 2168 2169 2170 2171 2172 2173
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2174
    return out
Y
Yang Yu 已提交
2175 2176


2177
def array_length(array):
2178
    """
2179 2180
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
2181
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2182

K
kavyasrinet 已提交
2183
    Args:
2184
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2185 2186

    Returns:
2187
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2188 2189

    Examples:
Q
qiaolongfei 已提交
2190
        .. code-block:: python
K
kavyasrinet 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2221
    """
2222

J
Jiabin Yang 已提交
2223
    if _non_static_mode():
2224 2225 2226 2227 2228
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2229 2230 2231 2232 2233 2234
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2235
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2236
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2237
    tmp.stop_gradient = True
2238 2239 2240
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2241
    return tmp
Y
Yu Yang 已提交
2242 2243 2244


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2245
    """
2246 2247 2248
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2249 2250 2251
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2252
    def __init__(self, block):
2253
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2254 2255 2256 2257 2258 2259 2260 2261
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2262 2263
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2264 2265 2266


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2267 2268 2269 2270 2271 2272 2273 2274
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2275
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2276 2277 2278 2279 2280
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2281
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2293
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2294
        for each_input in inputs:
2295
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2296
        self.inputs = inputs
2297
        self.is_scalar_condition = is_scalar_condition
2298
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2309 2310 2311 2312
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2313

2314 2315 2316
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2317
        param_list = [
W
Wu Yi 已提交
2318
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2319 2320
        ]

X
Xin Pan 已提交
2321 2322 2323 2324 2325
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2326 2327

        step_scope = parent_block.create_var(
2328
            type=core.VarDesc.VarType.STEP_SCOPES)
2329
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2330 2331
            type='conditional_block',
            inputs={
2332 2333
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2334
            },
2335 2336 2337 2338
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2339 2340 2341 2342 2343
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2344 2345 2346 2347 2348 2349
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2350
        inside_block_idx = inside_block.idx
2351

2352 2353 2354
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2396 2397
            conditional_block_op.desc, cpt.to_text(set()),
            [grad_sub_block.desc])
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2412 2413
            if grad_sub_block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2430

2431
def copy_var_to_parent_block(var, layer_helper):
2432 2433
    if not isinstance(var, Variable):
        return var
2434 2435 2436 2437 2438
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2439 2440 2441 2442
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2443 2444 2445
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2446
        assign(var, parent_block_var)
2447 2448 2449
    return parent_block_var


2450
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2451
    """
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2463 2464 2465 2466
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2467 2468 2469 2470 2471 2472 2473
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

        3. If it is in static mode, any tensors or operations created outside 
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2474 2475

        .. code-block:: python
2476 2477 2478 2479 2480

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2481
            c = a * b
2482
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2483

2484 2485 2486
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2487 2488

    Args:
2489
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2490
            value determines whether to return the result of ``true_fn`` or
2491 2492 2493 2494 2495 2496
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2497
             don't have to set this parameter. For more information, please
2498
             refer to :ref:`api_guide_Name` .
2499 2500 2501 2502
        return_names(sequence of string, optional): The default value is ``None`` . 
             Normally users don't have to set this parameters.  A sequence of strings 
             to represents the name of returned vars.  The structure of sequence must 
             be same with return values of true_fn and false_fn.
2503 2504

    Returns:
2505
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2506
        predicate ``pred`` is true else ``false_fn()`` .
2507 2508 2509

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2510 2511
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2512 2513 2514 2515

    Examples:
        .. code-block:: python

2516
            import paddle
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2527 2528 2529 2530
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2531

2532 2533

            def false_func():
2534 2535 2536 2537 2538
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2539

2540 2541
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2542
            pred = paddle.less_than(x=x, y=y, name=None)
2543
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2544
            # ret is a tuple containing 2 tensors
2545 2546
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2547
            #           [ True  True  True]]            
2548

2549
    """
J
Jiabin Yang 已提交
2550
    if _non_static_mode():
2551
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2552
        assert pred.size == 1, "condition input's numel should be 1"
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2565 2566
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2567 2568 2569
                return false_fn()
        return None

2570 2571
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2572 2573 2574
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2575
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2576 2577
    if true_fn is not None:
        if not callable(true_fn):
2578 2579 2580
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2581 2582 2583 2584
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2585
                true_output = map_structure(copy_to_parent_func,
2586 2587 2588
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2589 2590 2591
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2592 2593
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2594 2595 2596
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2597
                false_output = map_structure(copy_to_parent_func,
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    if return_names is None:
        return_names = ["no name"] * len(to_sequence(true_output))
    else:
        """ 
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
        true_output, false_output = expand_undefined_var(
            true_output, false_output, return_names)
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output)
    if len(to_sequence(true_output)) != len(to_sequence(false_output)):
2624
        raise ValueError(
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
            "true fn returns {} vars, but false fn returns {} vars, which is not equals"
            .format(len(to_sequence(true_output)),
                    len(to_sequence(false_output))))
    for true_out, false_out, return_name in zip(to_sequence(true_output),
                                                to_sequence(false_output),
                                                to_sequence(return_names)):
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}"
                .format(return_name, e))
2637 2638

    mask = cast(pred, dtype='int32')
2639 2640
    merge_func = lambda false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask)
2641 2642 2643 2644
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
        if x is None: return UndefinedVar("padding")
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


def expand_undefined_var(nest1, nest2, names):
2658 2659 2660 2661 2662
    """ TODO: make this function recursively.
        nest1: Var1, (UndefinedVar, [1,2,3])
        nest2: Var2, ([1,2,3,4], UndefinedVar)
        In this case, we should not expand recursively.
    """
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_VALUE_PREFIX

    def pack_undefined_var_as(seq):
        return pack_sequence_as(seq,
                                [UndefinedVar("padding") for i in flatten(seq)])

    def map_fn(n1, n2, name):
        if not name.startswith(RETURN_VALUE_PREFIX) and (isinstance(
                n1, UndefinedVar) or n1 is None):
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
        map(map_fn, to_sequence(nest1), to_sequence(nest2), to_sequence(names)))
    nest2_out = list(
        map(map_fn, to_sequence(nest2), to_sequence(nest1), to_sequence(names)))
    if not is_sequence(nest1): nest1_out = nest1_out[0]
    if not is_sequence(nest2): nest2_out = nest2_out[0]
    return nest1_out, nest2_out


L
liym27 已提交
2685
def _error_message(what, arg_name, op_name, right_value, error_value):
2686
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2699 2700
    :api_attr: Static Graph

L
liym27 已提交
2701 2702 2703 2704 2705 2706 2707 2708
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2709
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2710 2711 2712 2713 2714 2715 2716
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2717
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2718 2719 2720 2721 2722 2723
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2724 2725 2726
            import paddle

            paddle.enable_static()
L
liym27 已提交
2727 2728

            def fn_1():
2729
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2730 2731

            def fn_2():
2732
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2733 2734

            def fn_3():
2735
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2736

2737 2738 2739 2740
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2741 2742 2743
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2744

2745 2746 2747
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2748 2749

                # Call fn_1 because pred_1 is True
2750
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2751 2752 2753 2754
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2755
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2756

2757
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2768
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2769 2770 2771 2772 2773

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2774
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2775 2776 2777
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2778 2779
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2812
class Switch(object):
Q
qiaolongfei 已提交
2813
    """
2814
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2815

2816 2817 2818 2819 2820 2821 2822
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2823 2824 2825 2826
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2827
    Member Functions:
2828
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2829 2830 2831 2832 2833 2834
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2845

2846 2847
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2848 2849 2850

    Examples:
        .. code-block:: python
2851 2852
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2853

2854
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2855 2856 2857 2858 2859
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2860
            zero_var = fluid.layers.fill_constant(
2861
                shape=[1], dtype='float32', value=0.0)
2862
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2863
                shape=[1], dtype='float32', value=1.0)
2864
            two_var = fluid.layers.fill_constant(
2865
                shape=[1], dtype='float32', value=2.0)
2866

2867
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2868 2869

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2870
                with switch.case(global_step == zero_var):
2871
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2872
                with switch.default():
2873
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2874

2875 2876 2877 2878 2879
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2880 2881
    """

2882 2883 2884 2885 2886 2887 2888 2889 2890
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2891 2892 2893 2894
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2895 2896 2897 2898 2899 2900 2901
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2902 2903
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2904 2905
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2906
                [logical_and(x=pre_not_cond, y=condition)],
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2934 2935 2936


class IfElseBlockGuard(object):
2937

Y
Yu Yang 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2971
    """
2972 2973
    :api_attr: Static Graph

2974 2975 2976 2977
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2978 2979 2980 2981
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3023
        print(res)
3024
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
3025 3026

    Args:
3027 3028
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3029

3030 3031
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3043

X
Xin Pan 已提交
3044
    """
Y
Yu Yang 已提交
3045 3046 3047 3048
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3049
    def __init__(self, cond, name=None):
3050 3051
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3052
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3064
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3065
            out_true = parent_block.create_var(
3066 3067
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3068
                dtype=x.dtype)
Y
Yu Yang 已提交
3069 3070

            out_false = parent_block.create_var(
3071 3072
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3073
                dtype=x.dtype)
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3093
    def _parent_block(self):
Y
Yu Yang 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
3109
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3110
        for each_out in outs:
3111 3112
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
3113 3114
            # create outside tensor
            outside_out = parent_block.create_var(
3115
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
3116
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
3117
                dtype=each_out.dtype)
Y
Yu Yang 已提交
3118 3119 3120
            out_table.append(outside_out)

            # assign local var to outside
3121
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3122 3123 3124 3125

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3126
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3140 3141 3142 3143 3144
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3145
        return rlist
3146 3147 3148


class DynamicRNN(object):
Y
yuyang18 已提交
3149
    """
3150 3151
    :api_attr: Static Graph

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3164
    The input sequences will be shrank because only sequences of which the
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3177

3178 3179 3180 3181
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3182 3183 3184 3185

    Examples:
        .. code-block:: python

3186
            import paddle.fluid as fluid
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3214
    """
3215 3216 3217 3218
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3219 3220
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3221 3222 3223 3224
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3225
        self.zero_idx = None
3226 3227 3228
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3229
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3230 3231 3232 3233 3234
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3235
    def step_input(self, x, level=0):
3236
        r"""
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3280

Y
yuyang18 已提交
3281
        Args:
3282 3283 3284 3285 3286 3287 3288
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3289 3290

        Returns:
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3325
        """
3326
        self._assert_in_rnn_block_("step_input")
3327
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3328 3329 3330
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3331
                name=unique_name.generate('lod_rank_table'),
3332 3333
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3334 3335 3336 3337
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3338
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3339 3340
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3341
            self.max_seq_len.stop_gradient = False
3342 3343 3344
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3345
            self.cond.stop_gradient = True
3346 3347 3348 3349 3350 3351 3352
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3353 3354

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3355
            name=unique_name.generate('dynamic_rnn_input_array'),
3356 3357 3358
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3359 3360 3361 3362 3363 3364
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3365
        return array_read(array=input_array, i=self.step_idx)
3366

Y
yangyaming 已提交
3367
    def static_input(self, x):
3368
        r"""
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3442

Y
yuyang18 已提交
3443
        Args:
3444 3445 3446 3447
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3448 3449

        Returns:
T
tianshuo78520a 已提交
3450
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3462 3463 3464 3465

        Examples:
            .. code-block:: python

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3492
        """
Y
yangyaming 已提交
3493
        self._assert_in_rnn_block_("static_input")
3494
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3495 3496 3497 3498 3499
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3500
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3501 3502
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3503 3504 3505 3506 3507 3508
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3509 3510
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3511
    @signature_safe_contextmanager
3512
    def block(self):
Y
yuyang18 已提交
3513
        """
3514 3515 3516 3517 3518 3519
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3520
        """
3521 3522
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3523 3524 3525 3526
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3527 3528 3529 3530
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3531
            increment(x=self.step_idx, value=1.0, in_place=True)
3532 3533

            for new_mem, mem_array in self.mem_link:
3534 3535
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3536 3537 3538 3539
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3540 3541 3542 3543

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3544
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3545 3546

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3547
        """
T
tianshuo78520a 已提交
3548
        This function is used to get the output  sequences of DynamicRNN.
3549 3550 3551 3552 3553 3554 3555 3556 3557

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3558
        """
3559
        if self.status != DynamicRNN.AFTER_RNN:
3560 3561
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3562 3563 3564 3565 3566
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3567 3568 3569 3570 3571 3572
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3573
        r"""
3574 3575 3576
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3590
            value (float, optional): When init is None, it is used as initialized value
3591 3592
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3593
                the memory needs to reorder like the RNN's input sequences. It should be
3594 3595 3596 3597 3598 3599 3600
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3601
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3602
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3603
                the memory Tensor also need to be shrank and will only retain data \
3604 3605 3606 3607 3608 3609
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3610

3611 3612 3613
        Examples:
            .. code-block:: python

3614
                import paddle.fluid as fluid
3615

3616 3617
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3618

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3630

3631 3632
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3633 3634


3635 3636
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3637

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3657
        """
3658
        self._assert_in_rnn_block_('memory')
3659
        self._init_zero_idx_()
3660 3661 3662
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3663
        if init is not None:
3664 3665
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3666
            parent_block = self._parent_block_()
3667 3668 3669 3670 3671 3672 3673 3674
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3675
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3676 3677
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3678 3679 3680 3681 3682 3683
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3684
                init_tensor = init_reordered
3685
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3686
                name=unique_name.generate('dynamic_rnn_mem_array'),
3687 3688
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3689 3690 3691 3692 3693 3694
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3695
            retv = array_read(array=mem_array, i=self.step_idx)
3696 3697 3698
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3699 3700 3701 3702 3703 3704 3705 3706 3707
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3708
                name=unique_name.generate('mem_init'), dtype=dtype)
3709
            arr, dtype = self.input_array[0]
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3726 3727 3728
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3729
        """
3730 3731
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3732
        Args:
3733 3734 3735
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3736 3737 3738

        Returns:
            None
3739 3740 3741 3742 3743 3744
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3745
        """
3746
        self._assert_in_rnn_block_('update_memory')
3747 3748 3749 3750
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3761
        """
3762
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3763 3764

        Args:
3765 3766
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3767 3768 3769

        Returns:
            None
3770 3771 3772

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3773
        """
3774 3775 3776
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3777 3778
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3779
            outside_array = parent_block.create_var(
3780
                name=unique_name.generate_with_ignorable_key("_".join(
3781 3782 3783 3784 3785 3786
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3787 3788 3789 3790 3791
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3792 3793 3794 3795 3796 3797 3798 3799 3800
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3812 3813
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3814 3815


L
liym27 已提交
3816 3817
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3818 3819
    :api_attr: Static Graph

L
liym27 已提交
3820 3821 3822
    This operator is like a C++ switch/case statement.

    Args:
3823
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3824 3825 3826 3827 3828
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3829
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3830 3831 3832 3833
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3834
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3846 3847 3848
            import paddle

            paddle.enable_static()
3849

L
liym27 已提交
3850
            def fn_1():
3851
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3852 3853

            def fn_2():
3854
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3855 3856

            def fn_3():
3857
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3858

3859 3860 3861
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3862 3863
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3864

3865
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3866 3867 3868 3869
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3870
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3871 3872 3873 3874 3875
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3876
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3877 3878 3879
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3880
                exe = paddle.static.Executor(paddle.CPUPlace())
3881
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3882 3883 3884 3885 3886 3887 3888 3889
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3890 3891
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3892 3893 3894 3895

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3896
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3909
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3922
                                   "switch_case", int, type(key)))
L
liym27 已提交
3923 3924 3925

            if key in keys_of_fns:
                raise ValueError(
3926 3927
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
3928 3929 3930 3931 3932
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
3933 3934 3935
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3960
@templatedoc()
Y
Yang Yu 已提交
3961
def reorder_lod_tensor_by_rank(x, rank_table):
3962 3963 3964 3965
    """
    ${comment}

    Args:
3966 3967
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3968 3969
    
    Returns:
3970
        out(${out_type}): ${out_comment}.
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3984 3985 3986 3987 3988 3989 3990

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3991 3992
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3993
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3994 3995 3996 3997 3998 3999
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
4000
    return out
4001 4002


4003
def is_empty(x, name=None):
4004
    """
4005

4006
    Test whether a Tensor is empty.
4007 4008

    Args:
4009 4010 4011 4012
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4013 4014

    Returns:
4015
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4016 4017 4018 4019

    Examples:
        .. code-block:: python

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4031

4032
    """
H
hong 已提交
4033 4034 4035
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
4036
        return _C_ops.is_empty(x)
4037

4038 4039
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
4040 4041
    check_type(name, "name", (str, type(None)), "is_empty")

4042
    helper = LayerHelper("is_empty", **locals())
4043 4044
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4045 4046 4047
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
4048
    return cond